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Abstract. Face video retrieval has drawn considerable research attention recent-
ly. Most prior research mainly focused on either appearance features or correla-
tion features, which could degrade retrieval performance. In this paper, we fuse
appearance features and correlation features to exploit rich information of face
videos for face video retrieval via a deep convolutional neural network. The net-
work extracts appearance feature and correlation feature from a frame and the co-
variance matrix of a face video, respectively, and fuses them to obtain a compre-
hensive video representation. The fused feature is projected to a low-dimensional
Hamming space via hash functions for the retrieval task. The network integrates
feature extractions, feature fusion, and hash learning into a unified optimization
framework to guarantee optimal compatibility of appearance features and corre-
lation features. Experiments on two challenging TV-Series datasets demonstrate
the effectiveness of the proposed method.

Keywords: Face video retrieval, Deep CNN, Appearance Features, Correlation
Features

1 Introduction

Recent years have witnessed a tremendous explosion of multimedia data, especially
videos. Millions of videos are uploaded every day to the Internet via social network-
ing websites, mobile applications, etc. Face video retrieval aims to retrieve videos of a
particular person from a video database given one face video of him/her, and has in-
creasingly attracted more attention. It has a wide range of applications such as locating
and recognizing suspects from surveillance videos, intelligent fast forward of movies,
and collecting all videos of favorite character from the TV-Series.

Face video representation is critical in face video retrieval. Existing face video
representation methods can be roughly divided into two categories: appearance based
methods and correlation based methods. Appearance based methods focus on charac-
terizing human faces via appearance features such as such as color and texture [3, 6,
11, 18]. They regard a face video as a set of images and fuse the well-learned repre-
sentations of each frame to get the final video representation. In general, a face video
comprises multiple consecutive frames, and each frame depicts appearance features of
the face, which could vary greatly from frame to frame. Hence, ignoring correlation fea-
tures and simply treating videos as image sets is inadvisable. Correlation based methods
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treat a video as a whole and utilize the second-order statistics information such as the
covariance matrix (Cov) feature of a video to capture the video data variations in a sta-
tistical manner [14–16]. Albeit covariance matrix has been proved natural and efficient
for video representation, it only represents linear correlations of frames and does not
capture the appearance feature of each frame. In this paper, we fuse appearance fea-
tures and correlation features to obtain comprehensive video representations for face
video retrieval.
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Fig. 1: The architecture of the proposed network.

Fig. 1 shows the architecture of the proposed network. Given a frame of a face video
as the appearance feature and the covariance matrix as the correlation feature, the net-
work generates a comprehensive face video representation. The network contains four
components: appearance feature extractor module, correlation feature extractor mod-
ule, feature fusion module, and hash learning module. The appearance feature extractor
module is utilized to learn discriminative appearance features to alleviate the problem of
large intra-class variations of videos in face video retrieval. The correlation feature ex-
tractor module projects nonsingular covariance matrices to a Euclidean space and then
vectorizes them, since these matrices lie on a Riemannian manifold [14]. The follow-
ing feature fusion module fuses appearance features and correlation features to obtain
comprehensive video representations via a concatenation layer and a fusion layer. The
hash learning module is exploited to project high-dimensional fused features to a low-
dimensional Hamming space, considering that the fused features are designed for the
retrieval task, which have an eagerly demand of time and space saving. Implemented
via neural network and trained jointly, all these modules actually form an end-to-end
architecture.

The appearance feature extractor module and the correlation feature extractor mod-
ule appropriately process the input frame and covariance matrix, respectively, aiming
to provide effective appearance features and correlation features for the feature fusion
module. The feature fusion module fuses these features perfectly to utilize rich infor-
mation of face videos. The hash learning module generates compact representations to
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make the fusion more compact for retrieval. The four components are integrated into a
unified optimization framework to ensure that appearance features and correlation fea-
tures are compatibly fused for the final retrieval task. We conduct experiments on two
challenging TV-Series datasets (the Big Bang Theory and the Prison Break) [16]. The
excellent experimental results demonstrate the superiority of fusing appearance features
and correlation features for face video retrieval.

2 Related work

In this section, we give a brief review of related works including face video retrieval
and hashing methods.

2.1 Face Video Retrieval

Various methods for face video retrieval have been proposed [1, 2, 6, 14, 16, 19, 21] in
recent years. Arandjelovic and Zisserman [1, 2] utilized an identity preserving and vari-
ation insensitive signature image to represent a face video and developed an retrieval
system. Sivic et al. [21] represented a face video as a probability distribution to harness
multiple frames of the video. They built a complete retrieval system covered every key
procedure including face detection, face tracking, etc. The high-dimensional features
used in above methods are not applicable to retrieval task by the current view. Li et
al. [14] proposed compact video code (CVC) for face video retrieval. They comput-
ed covariance matrix from frames’ DCT features to utilize the second-order statistics
information. Furthermore, they proposed hierarchical hybrid statistic based video bina-
ry code [16]. This method first utilizes different parameterized fisher vectors as frame
representation and then executes CVC in the Reproducing Kernel Hilbert Space. Dong
et al. [6] proposed an end-to-end deep network to learn discriminative and compact
frame representations and fuse them to get final video representation, which is the first
attempt to employ a neural network to face video retrieval. Aiming to capture local
relationships between frames, Qiao et al. [19] designed a multi-branch CNN, which
learns video-level features by temporal feature pooling. Above methods mainly focuses
on either appearance features or correlation features. Different from these works, our
network fuses both the appearance features and correlation features to obtain compre-
hensive video representations for face video retrieval.

2.2 Hashing Methods

Hashing methods are efficacious solutions to nearest neighbor search problem and have
been widely studied recently. Locality sensitive hashing (LSH) [7] is a representative
data-independent hashing methods. Since random projections functions instead of hash
functions learned from data are adopted, LSH still needs long hash codes to achieve
satisfactory performance. Therefore, learning based data-dependent hashing methods
have become increasingly popular because of the benefit that taking full advantage of
data structure or supervision information of training data. The data-dependent methods
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can be further divided into unsupervised, semi-supervised and supervised methods. Un-
supervised methods learn hash functions only exploiting feature information of training
data without supervision information, including spectral hashing [23], iterative quanti-
zation hashing (ITQ) [8], gaussian mixture model embedding [9]. Due to supervision
information utilized in semi-supervised and supervised methods, performance of these
methods superior to unsupervised methods in general. Maximizing variance and inde-
pendence of hash bits over both labeled and unlabeled data, semi-supervised hashing
[22] is a typical semi-supervised method. Both utilizing supervision information, dis-
criminative binary coding [20] use point wise labels, and supervised hashing with ker-
nels [17], robust multiple instance hashing [4] use pair wise labels. In addition, ranking
label such as triplet label which aims to preserve rank order among samples are widely
used. Ranking based methods include column generation hashing [13], part-based deep
hashing [26]. In this work, triplet label supervision is exploited in the final binary space
for the improvement of the retrieval performance.

3 Method

3.1 Appearance Feature Extractor Module

The appearance feature extractor module of our architecture is based on the well-known
AlexNet [12]. The AlexNet has five types of layers: convolutional layer, max-pooling
layer, local contrast normalization layer, fully connected layer and the non-linear Re-
LU activation layer. The last but one fully connected layer, ”FC7” layer is followed
by a fully connected layer with 1, 000 output neurons and a softmax layer to com-
pute the probability distribution over the categories. Previous studies presented better
performances of the 4096-dim features of the ”FC7” layer than a large amount of the
hand-crafted features [12]. The original AlexNet, which is trained on the ImageNet [5],
is not specifically designed for face recognition. Hence, we fine-tune the Alexnet on
CASIA-WebFace [25] to transfer the network from natural image domain to face image
domain. The layers before ”FC7” layer of the fine-tuned AlexNet is utilized as better
initializations to learn our appearance feature extractor module.

3.2 Correlation Feature Extractor Module

The correlation feature extractor module projects covariance matrices to a Euclidean
space and vectorizes them. With the fine-tuned AlexNet, CNN feature of each frame is
extracted through forward propagation. Let F = [f1,f2, ...,fn] ∈ Rd×n be the CNN
features of a video where d represent the dimension of CNN feature and n is the number
of frames, fi denotes the ith frame with d-dim CNN feature. The covariance matrix of
this video is defined as

C =
1

n− 1

n∑
i=1

(fi − f)(fi − f)T , (1)

where f denotes the mean of all the frame features of this video. Since nonsingular
covariance matrices lie on a Riemannian manifold [14], Log-Euclidean Distance is re-
sorted to bridge the gap between Riemannian manifold and Euclidean space. Projecting
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points on the Riemannian manifold to a Euclidean space via logarithm map, then the
distance of two points C1,C2 is given by

dLED =‖ log(C1)− log(C2) ‖F , (2)

where log is the matrix logarithm operator, and ‖ · ‖F denotes the matrix Frobenius
norm. Since the off-diagonal entries of the matrix log(C) is counted twice during norm
computation, we vectorize the covariance matrix in the form of

vec(log(C)) = [v1,1,
√
2v1,2, ..., v2,2,

√
2v2,3, ..., vd,d], (3)

to generate a d(d + 1)/2-dim feature vector, where vi,j is the ith row, jth column
element of log(C).

3.3 Feature Fusion Module

In order to fuse the outputs of the two feature extractor modules, namely the CNN fea-
ture and the Cov feature, into an unitary feature, the feature fusion module is introduced
in the proposed network. The feature fusion module contains a concatenation layer and
a fusion layer. Given two vectors of d1-dim and d2-dim, respectively, a concatenation
layer concatenates them together to get a d1 + d2-dim vector. Let f ∈ Rd1 be the CNN
feature, and c ∈ Rd2 denotes the Cov feature. The output of the catenation layer is

x = [f , c] ∈ R(d1+d2). (4)

As a simple concatenation of two features, x is an intermediate result provided for
the fusion layer. The following fusion layer is a fully connected layer whose output is
computed by

y =W Tx+ b, (5)

where W and b are weight and bias of this layer. Followed by the hash learning mod-
ule, the feature fusion module guarantees the two features are combined directly for
the retrieval task, i.e., the features are fused for hashing, and the performance of hash
codes is able to guide the fusion of two features. Moreover, the feature fusion module
ensures CNN features are constrained by Cov features through back propagation, i.e.,
parameters of the appearance feature extractor module are influenced by vectorized Cov
features [24]. Hence, by introducing the feature fusion module, the whole network are
designed to fuse CNN features and Cov features optimally for the final retrieval task.

3.4 Hash Learning Module

The output of the fusion layer are comprehensive but high-dimensional video repre-
sentations which are not fit for the retrieval task. Hence the hash learning module is
utilized to map fused features to a low-dimensional Hamming space. Specially, we en-
force triplet ranking loss to hash functions to preserve the data similarity.

Suppose that the deep CNN have mapped face videos to a binary space: {+1,−1}s,
where s is the length of hash code. The triplet ranking loss reflects the relative simi-
larities in the form as ”video q is more similar to q̃ than q̂”. Let (q, q̃) be positive pair
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whose samples are from the same person, and (q, q̂) be the negative pair whose samples
are from different individuals, the loss of one triplet is thus formulated as

l
(
q, q̃, q̂

)
= max

(
d
(
q, q̃
)
− d
(
q, q̂
)
+ δ, 0

)
, (6)

where d(θ1,θ1) = (s − θT1 θ2)/2 is the Hamming distance in the binary space, and
δ ≥ 0 denotes the margin of the distance differences between positive and negative
pairs. Define the training video set as Q = [Q1,Q2, ...,QC ] of C classes, the objective
of the our deep CNN is

min
W?,W

C∑
i=1

∑
q,q̃∈Qi

q6=q̃

∑
j 6=i,q̂∈Qj

l
(
q, q̃, q̂

)
, (7)

where W is the parameters of the last layer (hash functions), and W? represents the
parameters of the front layers.

To solve Eq.(7), the gradients of Eq.(6) is needed. Since the hash function contains
the sign function sgn(·) which is non-smooth and non-differentiable, we use tanh(·)
instead of the sign function during the fine-tuning procedure. Therefore, the gradients
of Eq.(6) w.r.t. hash codes are given by

∂l

∂q
=

1

2
(q̂− q̃)× I, ∂l

∂q̃
= −1

2
q× I, ∂l

∂q̂
=

1

2
q× I, (8)

where I is a binary function which returns 1 when d
(
q, q̃
)
− d

(
q, q̂
)
+ δ > 0 and

0 for other occasions. Obtaining these gradients, the optimization procedure can be
conducted via the back-propagation algorithm.

4 Experiments

4.1 Dataset and Experimental Settings

We conduct experiments on the ICT-TV dataset [16] to evaluate the proposed method.
The ICT-TV dataset contains two large scale video sets from two American shows: the
Big Bang Theory (BBT) and Prison Break (PB). The two TV-Series are quite different
in filming styles. The BBT is a sitcom with 5 main characters, in which most scenes
are taken indoors. Each episode lasts about 20 minutes. Differently, many shots of the
PB are taken outside during the episodes of about 42 minutes long. This results in a
large range of different illumination conditions. All the face videos are collected from
the whole first season of both TV series, i.e., 17 episodes of BBT, and 22 episodes of
PB, and the number of face videos of the two sets are 4, 667 and 9, 435, respectively.

We compare our method with seven state-of-the-art hashing methods: LSH [7], SH
[23], ITQ [8], SITQ [8], RR [8], SSH [22], KSH [17], and three face video retrieval
methods: DBHR [6], HHS-VBC [16], and SPC-CVC [15]. For each TV-Series dataset,
we randomly select 10 face videos per actor or actress for training hash functions, and
use the rest face videos for testing. Same to [16], the query set consists of 10 face videos
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Table 1: Comparison mAPs of our methods.

Methods
the Big Bang Theory Prison Break

8 bits 16 bits 32 bits 64 bits 128 bits 256 bits 8 bits 16 bits 32 bits 64 bits 128 bits 256 bits
Ours (EC-RS) 0.9407 0.9376 0.9362 0.9437 0.9373 0.9413 0.4370 0.4716 0.5122 0.5300 0.5382 0.5672
Ours (EC-AP) 0.9430 0.9525 0.9445 0.9628 0.9563 0.9625 0.4873 0.5320 0.5869 0.5988 0.6184 0.6438
Ours (WC-RS) 0.9604 0.9687 0.9705 0.9702 0.9742 0.9746 0.6997 0.7195 0.7493 0.7554 0.7694 0.7844
Ours (WC-AP) 0.9665 0.9849 0.9909 0.9917 0.9853 0.9924 0.7667 0.7956 0.8056 0.8188 0.8377 0.8461

Table 2: Comparison mAPs with comparison methods.

Methods
the Big Bang Theory Prison Break

8 bits 16 bits 32 bits 64 bits 128 bits 256 bits 8 bits 16 bits 32 bits 64 bits 128 bits 256 bits
LSH [7] 0.4302 0.5301 0.6874 0.7486 0.8541 0.8761 0.1308 0.1299 0.1906 0.2672 0.3487 0.4264
RR [8] 0.8252 0.8738 0.8381 0.8558 0.8910 0.9131 0.2801 0.3806 0.4209 0.4637 0.4916 0.5115
ITQ [8] 0.8419 0.9019 0.8889 0.9130 0.9252 0.9345 0.3571 0.4450 0.5074 0.5337 0.5370 0.5332
SH [23] 0.6403 0.5425 0.5633 0.5332 0.4915 0.4447 0.2615 0.3135 0.3346 0.3293 0.2944 0.2675
SSH [22] 0.8113 0.8173 0.6791 0.6008 0.5571 0.5250 0.3435 0.4380 0.3293 0.2794 0.2651 0.2598
KSH [17] 0.8338 0.9116 0.9388 0.9441 0.9430 0.9435 0.5028 0.6155 0.6313 0.7041 0.7227 0.7456
SITQ [8] 0.8515 0.9439 0.9516 0.9500 0.9508 0.9483 0.4848 0.6072 0.6715 0.7008 0.6903 0.6742
DBHR [6] 0.9497 0.9696 0.9805 0.9803 0.9742 0.9814 0.7496 0.7775 0.7576 0.7857 0.8262 0.8293
HHS-VBC [16] 0.5099 0.5934 0.6718 0.6821 0.7170 0.7401 0.1388 0.1445 0.1560 0.1629 0.1784 0.1982
SPC-CVC [15] 0.5202 0.6471 0.7325 0.7543 0.7740 0.7899 0.1401 0.1525 0.1674 0.1903 0.2099 0.2287
Ours (WC-AP) 0.9665 0.9849 0.9909 0.9917 0.9853 0.9924 0.7667 0.7956 0.8056 0.8188 0.8377 0.8461

of each main character. To evaluate the quality of our method, we use four evaluation
criterions: the mean Average Precision (mAP), the Precision Recall curve (PR curve),
Precision curve w.r.t. different number of top returned samples (PN curve), and Recall
curve w.r.t. different number of top returned samples (RN curve). For fair comparisons,
all the methods use the same training and testing sets.

The network is trained using Caffe deep learning tool [10]. Stochastic gradient de-
scent is utilized to optimize the network, with momentum of 0.9 and weight decay of
0.0005. The learning rate of the optimization is initialized as 0.001 and decreased ac-
cording to the polynomial policy with power value of 0.6. The mini-batch size of the
training samples is 64, and the triplets are randomly generated based on the labels. The
total number of the iterations is 50, 000. In our experiments, we execute PCA to get
100-dim CNN features of faces and the dimension of the final Cov features is 5050.

4.2 Results and Discussions

In testing, we generate representations of test face videos in two ways: random selection
and average pooling:

– Random Selection (RS): We randomly select a frame of a face video and compute
the covariance matrix as the inputs of the network. A binary video representation is
obtained through forward propagation.

– Average Pooling (AP): As for a face video with m frames, all m frames of this
video are first inputted into the network with the covariance matrix to obtain m
video representations. Then these representations are fused by average pooling to
obtain a more robust binary video representation for retrieval.
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Fig. 2: Comparisons of PR, PN, and RN curves of the face video retrieval experiment on two
TV-series datasets.

Moreover, in order to verify the effectiveness of the correlation features, we exclude
correlation the feature extractor module and the feature fusion module of the proposed
network, i.e., remain the appearance feature extractor module and the hash learning
module only, and get a single branch network.

We test the single branch network and the whole proposed network with different
representation generation methods. The mAPs are shown on Table 1, where ”EC” mean-
s ”Exclude Correlation features”, ”WC” means ”With Correlation features”. It can be
seen that video representations generated by average pooling are more robust because
of large variations in each video of two datasets. The performance differences between
”Ours (EC-RS)” and ”Ours (WC-RS)”, ”Ours (EC-AP)” and ”Ours (WC-AP)” demon-
strate the effect of correlation features. Our single branch network which only contains
the appearance feature extractor module and the hash learning module can achieve com-
parable results with other methods.

Table 2 lists the mAPs of our method and the comparison methods, and Fig. 2
depicts the comparisons of curves. For the seven hashing methods, mean vector of
learned frame representations is computed as the final video hash representation. For
fair comparisons, these hashing methods use the 4096-dim input features generated by
the AlexNet fine-tuned on the WebFace dataset. As shown in Table 2 and Fig. 2, the
proposed method significantly outperforms other comparison methods. The advantages
of the proposed method mainly lie in two aspects: the utilization of correlation features
and the unified optimization procedure which makes the feature extractor modules, the
feature fusion module, and the hash learning module optimally compatible for the re-
trieval task.

The face video retrieval method DBHR [6] builds an end-to-end deep network to
learn discriminative and compact frame representations and fuse them to get final video
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representations. The low-rank discriminative binary hashing which is proposed to pre-
learn hash functions, is utilized to achieve state-of-the-art performances. The compar-
ison results of our method and DBHR are shown on Table 2 and Fig. 2, which certify
that fusing appearance features and correlation features is efficient for face video re-
trieval. HHS-VBC and SPC-CVC use multiple size-variant covariance matrices calcu-
lated from fisher vectors and raw intensities as video features, respectively, and learn
video hash representations from these covariance matrices. We keep the experimental
setting of our method same with them and report the results published in [15]. Our
method quite outperforms these two face video retrieval methods, and the main rea-
son is that our method simultaneously optimizes the feature extraction modules, the
feature fusion module, and the hash learning module for optimal compatibility, rather
than uses fixed features which has nothing to do with the hashing procedure as input.
The HHS-VBC and SPC-CVC methods extract features from the 20× 16 gray images,
which may have influence on the performance. But, it takes so large time and space
for running them on larger size face frames that the comparison experiment cannot be
conducted under current hardware conditions.

5 Conclusion

In this paper, we fused appearance features and correlation features for face video re-
trieval via a deep CNN. In the network, the appearance feature extractor module and
the correlation feature extractor module extract discriminative appearance features and
vecorized correlation features, respectively. The following feature fusion module fus-
es these features together to exploit rich information of face videos. The hash learning
module projects the fused feature to a low-dimensional Hamming space. The network
integrates these modules into a unified optimization framework to ensure that appear-
ance features and correlation features are optimally fused for the retrieval task. Our
method achieved excellent performances on two challenging TV-Series datasets.
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