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a b s t r a c t 

In this paper, a novel deep convolutional neural network is proposed to learn discriminative binary hash 

video representations for face retrieval. The network integrates face feature extractor and hash functions 

into a unified optimization framework to make the two components be as compatible as possible. In 

order to achieve better initializations for the optimization, the low-rank discriminative binary hashing 

method is introduced to pre-learn the hash functions of the network during the training procedure. The 

input to the network is a face frame, and the output is the corresponding binary hash frame represen- 

tation. Frame representations of a face video shot are fused by hard voting to generate the binary hash 

video representation. Each bit in the binary representation of frame/video describes the presence or ab- 

sence of a face attribute, which makes it possible to retrieve faces among both the image and video 

domains. Extensive experiments are conducted on two challenging TV-Series datasets, and the excellent 

performance demonstrates the effectiveness of the proposed network. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

Face video retrieval aims to search a video database to find the

ideos containing a particular person, with a face image/video of

he same person as the query. It is attracting more and more at-

entions in recent years owing to its extensive applications, such

s searching large amounts of long videos on the Internet to an-

otate face data for vision researchers, locating and tracking a spe-

ific criminal suspect in the mass of surveillance videos, and the

ntelligent fast-forward and fast-backward of movies. 

The challenging problems of face video retrieval are the large

ntra-class variations of faces and the strong demands of time/pace

aving. The faces in Fig. 1 show the dramatic intra-class variations

aused by poses, lighting conditions, expressions, clothes, back-

round interferences, and the orientation of the actor in TV-Series.

ood representations of faces should be robust to these variations

nd discriminative between classes. Moreover, the representations

ave to be compact for fast retrieval and space saving. In this pa-

er, we design a deep convolutional neural network (CNN) to learn

iscriminative and compact representations for face video retrieval.

Deep neural networks recently have been successfully applied

n many face-related tasks, such as face recognition [1–5] , face

lignment [6–8] , face detection [9,10] , and face attribute prediction

11] , which manifests their powerful abilities on learning appropri-

te high-level representations of faces. Despite the discriminative
∗ Corresponding author. 
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ower, the CNN features in the form of high dimensional vectors

f floating point numbers lead to tremendous time and space cost

f the retrieval procedure. Hashing methods [12,13] ,which project

igh dimensional features into a binary space with relatively low

imensions, are widely utilized in retrieval tasks. 

The above mentioned methods concentrate on either hash func-

ion learning or feature learning. The two procedures are indepen-

ent with each other, resulting that the learned features might be

ncompatible with the learned hash functions. Therefore, we inte-

rate hash functions into our deep CNN to accomplish end-to-end

raining, by which the face feature extraction and hash function

earning procedures can be optimized jointly to learn discrimina-

ive and compact representations of faces. Fig. 1 depicts the pro-

osed deep CNN for face retrieval. Even though faces of a same

erson have dramatically various appearances caused by expres-

ions, lighting conditions, orientations and poses, the deep CNN

an represent these various facial appearances by similar compact

inary hash codes. 

Our deep CNN contains two components: face feature extractor

nd hash functions. Fig. 2 shows that the training of our CNN fol-

ows a general-to-specific deep transfer scheme and includes three

teps: learning face feature extractor, learning hash functions, and

ne-tuning. In the first step, we retrain the well-known AlexNet

14] which is trained on the ImageNet dataset [15] , with the large-

cale face identity dataset, CASIA-WebFace [16] , to adapt the net-

ork to the face domain and simultaneously enhance the discrim-

native power of face features. The bottom seven layers of the re-

rained AlexNet are cut out and utilized as the feature extractor. In

https://doi.org/10.1016/j.patcog.2018.04.014
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2018.04.014&domain=pdf
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Fig. 1. Illustration of an ideal face retrieval system. The facial appearances of Leonard Hofstadter have dramatic variations caused by expressions, lighting conditions, orien- 

tations, and poses, the deep CNN in the system can still output similar binary representations for these faces. Besides, the hash functions are integrated into the deep CNN 

to accomplish the end-to-end learning. 

Fig. 2. The training procedure of our deep CNN follows a general-to-specific deep transfer scheme and includes three steps: learning face feature extractor, learning hash 

functions, and fine-tuning. The red rectangle represents the parameters of the component are learned in the corresponding step, the bold blue arrow presents the deep 

transfer scheme, and the black arrow shows the three steps. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 

this article.) 
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the second step, the hash functions are learned with the extracted

features of the training set of face videos by the low-rank discrim-

inative binary hashing method. The hashing method is guided by

the supervisory information of the training set to make faces of

a same person have similar hash representations. In the third step,

the entire CNN, including face feature extractor and hash functions,

is specifically fine-tuned with the training set. The triplet ranking

loss [17–20] is used to separate positive sample pairs and negative

pairs by setting a distance margin. 
r  
The input to the network is a face frame, and the output is the

orresponding binary representation. Each bit in the representation

an be considered as the presences or absences of visual attributes

f the face. For a face video shot which is actually a set of face

rames, we get the corresponding set of binary hash representa-

ions through the trained network. Since the bits of representa-

ions describe the presences or absences of face attributes, it is

asy to fuse the set of frame representations through hard voting

o generate the representation of the video. The bits of the video

epresentation still have the same meanings as frame represen-
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ations. Therefore, cross-domain face retrieval can be conducted,

.e. retrieving face videos given the face image, and retrieving face

mages given the face video. We conduct experiments of cross-

omain face retrieval on two challenging TV-series datasets, and

chieve excellent performances on both datasets. 

The contributions of our work are threefold: (1) our deep CNN,

hich simultaneously learns face feature extractor and hash func-

ions, can learn discriminative and compact hash representations

f face videos for retrieval; (2) the low-rank discriminative binary

ashing method, which encourages the discriminative power, low-

ank property and stability of hash codes, is proposed to initial-

ze the hash functions in our deep CNN, and outperforms other

tate-of-the-art traditional hashing methods; and (3) our approach

chieves excellent performances for various face retrieval tasks on

wo challenging TV-series datasets. 

This paper is an extension of our previous work [21] . The ex-

ensions include: (1) we employ the proposed face video represen-

ation method to the cross-domain face retrieval task and achieve

ood performances; (2) we train the face feature extractor of our

etwork on the CASIA-WebFace dataset and the ImageNet dataset

ollowing a general-to-specific deep transferring scheme to prevent

ver-fitting; and (3) more details of the implementations are de-

cribed in this manuscript, including the fusion of frame represen-

ations and the selection of triplets. 

The remainder of the paper are organized as follows.

ection 2 reviews the related work including face video retrieval

ethods, traditional hashing methods, and deep hashing methods.

e show the overview of our approach in Section 3 , and elaborate

he details of the training of our CNN in Section 4 . Exhaustive ex-

eriments and discussions on two TV-Series datasets are shown in

ection 5 , and Section 6 concludes this paper. 

. Related work 

.1. Face video retrieval 

Arandjelovic and Zisserman [22,23] presented a face shot re-

rieval system where each face shot is represented by a variation-

obust signature image. Sivic et al. [24] characterized face shots

ia the probability distributions of its face frames for face shot re-

rieval. These works aim to accomplish complete retrieval system

f face videos, and the key points are the implementations of each

rocedure including shot boundary detection, face detection, face

racking, etc. In these retrieval systems, face videos are represented

y high dimensional vectors of real-valued numbers rather than

ompact binary hash code, which still has large time and space

omplexities. In contrast, we concentrate on learning compact and

inary hash codes of face videos for retrieval. 

Arandjelovic [25] proposed quasi-transitive similarity for

dentity-based retrieval of face sets from large unlabelled collec-

ions acquired in uncontrolled environments. His work is a meta-

lgorithm and focuses on leveraging the structure of the data to

ake the best use of an available baseline. Different from this

ethod, we focus on learn discriminative and compact represen-

ations of face video. 

Recently, Li et al. [26] exploited the covariance matrices of DCT

eatures of frames to represent face videos, and introduced the

ompact video code (CVC) to encoded covariance matrices to get

he binary hash codes of face videos for retrieval. They further uti-

ized the Fisher vector features instead of the DCT features and

xtended the CVC method via kernel tricks in [27] . At the same

ime, they released two large scale TV-Series face video datasets

hich can be used to evaluate the performance of face video re-

rieval methods. They proposed a hashing method across the Eu-

lidean Space and the Riemannian Manifold to measure the sim-

larity of face images and videos for cross-domain face retrieval
n [13] , and represented face videos as spatial pyramid covariance

atrices for face retrieval in TV-series in [28] . Although the above

ethods achieve good performances, the feature extracting (DCT,

isher vector, etc. ) and hash function learning are still two inde-

endent procedures. In other words, the features are not extracted

or the retrieval task, which might limit the improvement of the

etrieval performance. Different from these methods, our method

ntegrates the face feature extraction procedure and the hash func-

ion learning procedure into a unified end-to-end training frame-

ork via a deep CNN. 

.2. Traditional hashing methods 

Taking advantages of the compactness and binary property of

he hash codes, hashing methods are commonly exploited in re-

rieval tasks for fast retrieval. Existing hashing methods can be

oughly classified into two categories: data-independent and data-

ependent. The data-independent hashing methods project high-

imensional features into low-dimensional space via hash func-

ions which have nothing to do with training data. For exam-

le, the locality sensitive hashing (LSH) [29] and the kernelized

ocality-sensitive hashing (KLSH) [30] exploit random hash func-

ions, and the shift-invariant kernel hashing (SIKH) [31] uses a

hifted cosine function as the hash function. In real applications,

he hash codes of data-independent methods are usually very long

o guarantee satisfactory retrieval performances. 

Different from data-independent hashing methods, data- 

ependent methods learn hash functions to make sure that the

ash codes are semantically similar or structurally similar through

ully discovering the supervision information or the structure infor-

ation of the training data. The data-dependent methods are thus

earning-based methods, and can be categorized as unsupervised,

emi-supervised, and supervised according to whether the supervi-

ion information are used or not. Unsupervised methods, including

he spectral hashing (SH) [32] , the iterative quantization hashing

ITQ) [33] , the anchor graph hashing (AGH) [34] , the termed evolu-

ionary compact embedding (ECE) [35] , etc. , exploit only the train-

ng data without label information to learn hash functions. The SH

alculates the hash codes by thresholding the eigenvalues of the

aplacian matrix of the similarity graph, and the ITQ iteratively

ptimizes the projection from the original high-dimensional fea-

ure space to the target low-dimensional Hamming Space via min-

mizing the quantization error of each iteration. Semi-supervised

nd supervised methods use both the training data and the corre-

ponding label information to obtain high quality hash codes, and

he representatives are the supervised iterative quantization hash-

ng (SITQ) [33] , the semi-supervised hashing (SSH) [36] , the min-

mal loss hashing (MLH) [37] , the kernel-based supervised hash-

ng (KSH) [12] , the discriminative binary coding (DBC) [38] , the

ocality-sensitive two-step hashing (LS-TSH) [39] , the supervised

iscrete hashing with relaxation (SDHR) [40] , the robust discrete

ode modeling (RDCM) [41] , and the predictable hash code learn-

ng (PHCL) [42] , etc . Specifically, the SITQ utilizes the canonical cor-

elation analysis instead of the principal component analysis used

n ITQ. The SSH learns hash functions by using both labeled data

nd unlabeled data, i.e. , minimizing the quantization error of the

abeled data, and maximizing the variance and the independence

f hash representations on all the data simultaneously. The KSH

mploys the algebraic equivalence of the binary Hamming distance

nd the inner product of hash codes, which provides the feasibil-

ty of hashing in kernel spaces. The DBC jointly optimizes the dis-

riminability and predictability of hash representations to discover

isual attributes. The LS-TSH first applies the LSH on label vectors

o generate hash codes, and then learns hash functions by using

he generated hash codes, which provides a more fast hash learn-

ng method. The RDCM learns high-quality discrete binary codes
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and hash functions by restraining the influence of unreliable binary

codes and potentially noisily-labeled samples. The PHCL learns the

predictable hash code by minimizing the distance between codes

for samples from the same class and maximizing the distance be-

tween codes for samples from different classes. 

2.3. Deep hashing methods 

Recently, more and more hashing methods based on deep neu-

ral networks are proposed with significant performance improve-

ments than traditional hashing methods. Xia et al. [43] proposed

a CNN based supervised hashing method (CNNH) which contains

two stages, i.e. , the first stage is to learn approximate hash codes

by minimizing reconstruction errors, and the second stage is to

learn image representations and hash functions simultaneously by

using a deep CNN and the approximate hash codes obtained in the

first stage. The CNNH is a pioneer work of hashing by introducing

deep networks, but the learned image representation in the latter

stage is not able to guide the former stage to learn better approx-

imate hash codes. After CNNH, more literatures devoted to build-

ing end-to-end networks which contain all the stages of the hash

learning so that every stage can be optimized for the final retrieval

task. Lai et al. [18] proposed a “network in network” [44] based

deep hashing model which projects the input images into the

Hamming space for image retrieval. Zhao et al. [19] presented a

multi-label image retrieval method, and the core component of

the method is a deep CNN which is trained under the guidance

of multilevel semantic ranking information. Lin et al. [45,46] mod-

ified the AlexNet by adding a new latent layer to learn hash codes

of clothing images for the clothing image retrieval system. Liong

et al. [47] learned compact binary representations via the proposed

deep neural networks based hashing methods. Zhang et al. [17] de-

signed an element-wise layer for the deep CNN to weight the bits

of hashing codes, and proposed the bit-scalable hashing method

based on the designed layer. Zhuang et al. [48] addressed that deep

hashing method with triplet ranking loss needs a extremely large

amount of triplets, and formulated the hash learning procedure as

a multi-label classification problem. Lin et al. [49] presented an un-

supervised deep hashing method via imposing three constrains on

binary codes as the guidance of the network training, and outper-

formed the state-of-the features on the tasks of image matching,

image retrieval, and object recognition. Liu et al. [50] addressed

that the widely used non-linear approximation functions, sigmoid

or tanh, inevitably slow down the convergence of the network, and

imposed a constraint enforcing the values of the network outputs

around ± 1 instead of the non-linear activation functions. Zhang

et al. [51] trained a very deep neural network for hashing by intro-

ducing auxiliary variables and updating parameters layer by layer.

Li et al. [52] learned hash representations for image data with pair-

wise labels based on multiple deep CNNs. Tang et al. [53] proposed

a supervised deep hashing method for scalable face image retrieval

based on Classification and Quantization errors. Since the deep

learning framework is able to simultaneously learn compatible fea-

tures and hash functions, the above hashing methods achieve en-

couraging performances on the image retrieval task. Motivated by

these methods, we propose a deep learning based hashing method

to learn compact binary codes of face videos for retrieval. 

3. Approach overview 

Fig. 3 depicts the four procedures of our approach. Firstly, a

deep CNN is trained with large amounts of face images. The input

to the network is a face frame, and the output is the corresponding

compact binary hash representation of the face frame. Secondly, a

face video is regarded as a collection of face frames, and a set of bi-

nary frame representations of the face video are computed by the
rained deep CNN. Thirdly, all the frame representations are fused

nto a unified binary representation for the face video. Each bit of

he video representation has the same meaning with the frame

epresentation, which is convenient for measuring the similarity

etween face images and videos. Finally, the retrieval procedure

s executed by calculating the distances between the binary rep-

esentation of the query and ones of face videos in the database. 

Fig. 4 shows the architecture of our deep CNN. The CNN is

ased on the well-known AlexNet [14] , and we make the follow-

ng modifications to implement hash functions by CNNs. The “FC8”

nd “Softmax” layers for classification of the AlexNet are removed,

nd four layers are added after the “FC7” layer: l 2 normalization

ayer (L2N), fully connected layer (FC8), tanh layer (TH), and the

oss layer. The “L2N” layer executes the l 2 normalization on the

utput features of the “FC7” layer for the convenience of learn-

ng hash functions. After the “L2N” layer, a fully connected layer

amed “FC8” is added to act as the hash functions, and the num-

er of the output neurons is the same as the number of the bits

f the hash representation. The values of the outputs of the “FC8”

ayer are consecutive and range over the real number domain, so

 tanh layer named “TH” is added after the “FC8” layer to quan-

ify the consecutive features to the space of (−1 , +1) S , where S is

he number of the bits of the hash representation. Finally, a triplet

oss is inserted at the end of the network for the fine-tuning. The

etails of the training are elaborated in Section 4 . 

Ideally, the complex non-linear mapping implemented by the

NN should be h : F → {−1 , +1 } S where F denotes the face im-

ge space, but the CNN shown in Fig. 4 now only describes the

apping h f : F → (−1 , +1) S . In order to obtain the binary repre-

entation of a face frame f i , a sign function is used as 

p i = h f ( f i ) , 

c i = h ( f i ) = sgn (p i ) , (1)

here p i represents the output of the “TH” layer, c i denotes the

orresponding binary representation of f i , and the sgn ( · ) is the

ign function, i.e. , for each element of the matrix inside the func-

ion, the function returns +1 if the element is greater than zero,

nd −1 if it is less than or equal to zero. For a face video clip

 = { f 1 , f 2 , . . . , f n } with n frames where f i denotes the i th frame

f V , we compute the binary representations of its frames C =
 c 1 , c 2 , . . . , c n ] ∈ {−1 , +1 } S×n by the trained deep CNN. A fused rep-

esentation of the video is required for the face retrieval task, and

he mean vector of frame representations, 1 
n 

∑ n 
i =1 c i , is a straight-

orward choice. Note that each element in c i is either +1 or −1 ,

hich can be viewed as the presence or absence of a face attribute.

he mean vector of these frame representations reports the aver-

ge degree of presence of attributes in the face video. 

The Hamming distance of the binary space is introduced to

easure the similarity of hash representations, and can be writ-

en as 

d 
(
c i , c j 

)
= 

S − c � 
i 

c j 

2 

. (2)

n the face video retrieval task, we need to compute the distance

etween two video representations to decide whether the face

ideos are similar or not. The mean vector of frame representa-

ions can be used as the video representation. 

However, since the mean vector is unlikely to be binary, it

eeds to be quantized. For each bit in the mean vector, +1 is used

f the value of bit is larger than 0, otherwise −1 is used, which is

ormulated as 

c = sgn ( 
1 

n 

n ∑ 

i =1 

c i ) . (3)
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Fig. 3. The overview of our face video retrieval approach. 

Fig. 4. The architecture of our deep CNN. 
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here c is the binary representation of face video V . The represen-

ations after quantization is equivalent to the hard-voting on each

it over all the frame representations. 

The representations of all the face videos in the database are

btained off-line and stored for retrieval. For a query video, the

orresponding representation is calculated on-line. Both of the

uery and database video representations are binary, so the simi-

arities between the query video and all the videos in the database

re calculated by Eq. (2) which represents counting the number

f different bits of the two representations. The videos in the

atabase are returned according to the calculated distances. The

ntire retrieval procedure takes less computational resources and

an be accomplished in short time owing to the learned binary

ideo representations. 

. Training deep CNN 

The CNN depicted in Fig. 4 has two components: layers before

L2N” as the face feature extractor, and the newly added “FC8” and

TH” layers as the hash functions. Fig. 2 shows that the training of

he deep CNN contains three steps: learning face feature extractor,

earning hash functions, and fine-tuning. 

.1. Learning face feature extractor 

The face feature extractor in our network is based on the well-

nown AlexNet. The released AlexNet is learned by using the large

cale image dataset, ImageNet [15] , which contains more than 1.2

illion images of 1,0 0 0 categories. The AlexNet has five types of

ayers: convolutional layer, max-pooling layer, local contrast nor-

alization layer, fully connected layer and the non-linear ReLU
ctivation layer. The “FC7” layer is followed by a fully connected

ayer with 1,0 0 0 output neurons and a softmatx layer to com-

ute the probability distribution over the categories. Since previ-

us studies such as [14,54] presented better performances of the

096-dimensional features of the “FC7” layer than a large amount

f hand-crafted features, we thus use layers before “FC7” of the

lexNet as the initialization of the face feature extractor. 

Considering that the AlexNet is trained with natural images, we

earn the face feature extractor by using the large-scale face iden-

ity dataset, CASIA-WebFace [16] , to transfer the network from nat-

ral image domain to the face image domain. The CASIA-WebFace

ataset has 494,414 face images of 10,575 individuals in total. To

earn the face feature extractor, we add a fully connected layer

ith 10,575 output neurons and a softmax layer after the “L2N”

ayer. The learning procedure is implemented by using the open

ource Caffe tool [55] . We learn the face feature extractor via the

tochastic gradient descent method where the momentum and the

eight decay are set as 0.9 and 0.0 0 01, respectively. The learning

ate of the optimization is initialized as 0.001 and decreased ac-

ording to the polynomial policy with power value of 0.5. Besides,

he size of the mini-batch of the training samples is 256, and the

otal number of the iterations is 210,0 0 0. 

.2. Learning hash functions 

In order to effectively initialize the hash functions of our deep

NN, we introduce the Low-rank Discriminative Binary Hashing

LDBH) method to represent the face videos via compact binary

epresentations. 

Assume that we have N training face frames, and use the

earned face feature extractor to generate their corresponding face
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features represented as P = [ p 1 , p 2 , . . . , p N ] ∈ R 

T ×N where p i rep-

resents the face feature of the i th training sample, and T repre-

sents the dimension of the face feature. The hash functions W are

to be learned to map these face features to the compact binary

hash codes, which is formulated as 

B = sgn (W 

� P ) , (4)

where B = [ b 1 , b 2 , . . . , b N ] ∈ { +1 , −1 } S×N is the binary hash code

matrix of P , b i represents the corresponding compact binary hash

code of the face feature p i , and W = [ w 1 , w 2 , . . . , w S ] ∈ R 

T ×S has S

hash functions in total. Note that the dimension of the hash code

satisfies S � T to ensure the compactness of the hash codes. 

To clearly elaborate the learning details of the LDBH

method, we reformulate P and B as P = [ P 1 , P 2 , . . . , P C ] and

B = [ B 1 , B 2 , . . . , B C ] , respectively, where C is the number of classes,

P i is the face feature set of the training samples of the i th class,

and B i is the binary hash code set of P i . To guarantee the qualities

of the generated binary codes, the LDBH encourages binary codes

to be discriminative, low-rank and stable. The discriminations of

the hash codes make that face features of a same person have

similar hash codes and the hash codes of face features of different

individuals are as dissimilar as possible, which is implemented by

minimizing 

g(B ) = 

C ∑ 

p=1 , 
b i , b j ∈ B p 

d(b i , b j ) − λ
C ∑ 

p=1 , 
b i ∈ B p 

C ∑ 

q =1 ,q � = p, 

b j ∈ B q 

d(b i , b j ) , (5)

where d ( · , · ) is the Hamming distance between binary codes, and

λ is a parameter to balance the two terms. In addition, the binary

code matrix B are expected to be low-rank so that hash codes be-

longing to a same individual are well correlated and the redun-

dancy of hash codes is significantly decreased. It is NP-hard to

solve the problem of rank function minimization, so minimizing

its convex envelope, the nuclear norm ‖ B ‖ ∗ , is exploited instead.

Since hash functions w i actually act as hyperplanes splitting the

face feature space, the statistical learning theory successfully uti-

lized in SVM is able to guide the optimization. Specifically, the hy-

perplanes with the largest margin should be used to ensure the

stabilities of the hash codes. Overall, the LDBH is modeled as 

min 

 ,ξ , B 
g(B ) + η‖ B ‖ ∗ + 

1 

2 

‖ W ‖ 

2 
F + μ

d ∑ 

i =1 

n ∑ 

j=1 

ξi j 

s.t. B i j (w 

� 
i p j ) ≥ 1 − ξi j , 

ξi j ≥ 0 , 

B = sgn (W 

� P ) , (6)

where η is a parameter to control the weight of low-rank term,

‖ W ‖ F represents the matrix Frobenius norm of W and aims to seek

the hyperlanes with largest margins, and μ is set to take a trade-

off between the splitting error and the capacity like SVM. 

The global optimum solution is not easy to find due to the non-

convex property of the objective function of the LDBH, so we iter-

atively optimize each term to obtain an effective local optimum

solution instead. Firstly, we fix B and utilize the rows of B as la-

bels and P as training data to train S linear SVMs to update W and

ξ . Secondly, the binary code matrix B is updated by using the new

W as Eq. (4) . Thirdly, with the fixed W and ξ , an auxiliary vari-

able Z is introduced to deal with the discriminative and low-rank

constraints simultaneously, and Eq. (6) is written as 

min 

B , Z 
g(B ) + η‖ Z‖ ∗

s.t. B = Z, B ∈ { +1 , −1 } S×N . (7)
he alternating direction method is exploited to solve Eq. (7) , and

he augmented Lagrangian function is given by 

g(B ) + η‖ Z‖ ∗ + tr(H(Z − B ) � ) + 

α

2 

‖ Z − B ‖ 

2 
F . (8)

here H is the Lagrangian multiplier matrix. The Z has a closed

nalytical form solution [56] to be optimum with fixed B , and

 is optimized by the subgradient descent method [38] with

xed Z . The algorithm of the LDBH method is summarized in

lgorithm 1 where � represents the element-wise multiplication

Algorithm 1: Low-rank discriminative binary hashing. 

Input : Feature set P ∈ R 

T ×N and the corresponding labels. 

Output : Hash functions W ∈ R 

T ×S . 

1 repeat 

2 Train S linear SVMs with B as labels to update W ; 

3 B = sgn (W 

� P ) ; 
4 repeat 

5 SVD decomposition: B − H/β = U QV 

� ; 
6 Z = U 

(
max (| S − η/α| , 0) � sgn (Q ) 

)
V 

� ; 
7 Update B by using subgradient descend method [38]; 

8 H = H + β(Z − B ) ; 

9 β = γβ; 

10 until Convergence ; 

11 until Convergence ; 

perator. 

.3. Fine-tuning 

With the effective initializations of the face feature extractor

nd the hash functions, this procedure aims to simultaneously

ne-tune them in a unified optimization framework. The frame-

ork makes the two components interact with each other for the

ptimal compatibility, i.e. , the extracted face features are utilized

o fine-tune the hash functions for good hashing results, and the

ashing results can inversely guide the fine-tuning of the face fea-

ure extractor. After fine-tuning, the face feature extractor and hash

unctions are firmly combined to form a unified hashing network

or face video retrieval. To get outstanding hash representations

or retrieval, the object of the fine-tuning procedure is to hold a

arge margin between the distances of positive and negative pairs

f hash representations. To this end, the triplet ranking loss is ex-

loited to fine-tune the entire network. 

The triplet ranking loss describes the relative similarities of

he hash representations in the form like “face frame f is more

imilar to ˜ f than 

̂ f ”. Consistent with Eq. (1) , the (p, ̃  p , ̂  p )

s used to represent ( h f ( f ) , h f ( ̃
 f ) , h f ( ̂

 f )) , and the (c, ̃  c , ̂  c ) is

sed to represent corresponding binary hash representations

( h ( f ) , h ( ̃  f ) , h ( ̂  f )) . Since the sign function sgn ( · ) is non-smooth

nd non-differentiable, the (p, ̃  p , ̂  p ) is used instead of the (c, ̃  c , ̂  c )

uring the fine-tuning procedure. Similar to Norouzi et al. [20] , the

riplet ranking loss for (p, ̃  p , ̂  p ) is defined as 

t( f , ̃  f , ̂  f ) = max 

(
d 
(

p, ̃  p 

)
− d 

(
p, ̂  p 

)
+ ζ , 0 

)
, (9)

here d ( · , · ) is the Hamming distance of binary space described

n Eq. (2) , and ζ ≥ 0 represents the margin of the distance dif-

erences between positive and negative pairs. Supposing that the

raining face frame set of C classes is F = [ F 1 , F 2 , . . . , F C ] , we model

he fine-tuning procedure of our deep CNN as 

min 

W f , W 

C ∑ 

i =1 

∑ 

q , ̃  q ∈ F i , 
q � = ̃  q 

∑ 

j � = i, ̂ q ∈ F j 

t( f , ̃  f , ̂  f ) , 
(10)
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here W f and W represent the parameters of the face feature ex-

ractor and the hash functions, respectively. 

To solve Eq. (10) , we need to compute the gradients of

q. (9) w.r.t. (p, ̃  p , ̂  p ) : 

∂t 

∂ p 

= 

1 

2 

( ̂  p − ˜ p ) × 1 

(



)
, 

∂t 

∂ ̃  p 

= −1 

2 

p × 1 

(



)
, 

∂t 

∂ ̂  p 

= 

1 

2 

p × 1 

(



)
, 


 � d(p, ̃  p ) − d(p, ̂  p ) + ζ > 0 , (11) 

here 1 ( · ) is the indicator function which returns 1 if the condi-

ion inside is true and 0 for other occasions. 

Another issue is how to select the triplets, since many triplets

hose loss equals to 0 would take much memory and computa-

ion cost resulting in slower convergence. In order to ensure fast

onvergence and good optimization simultaneously, it is crucial to

enerate triplets which have contributions to the training. We sim-

lify the problem of generating triplets as selecting the negative

ample ̂ p for the similar sample pair (p, ̃  p ) from the whole batch.

he class information is used to measure the similarity, i.e. , p and˜ p are face frames of the same person, and 

̂ p belongs to another

ndividual. Specifically, we organize the training set in the form of

imilar sample pairs to let a batch with L samples have L /2 similar

ample pairs. For a similar sample pair (p, ̃  p ) , we select negative

amples only from the left L − 2 samples of the batch. The nega-

ive sample ̂ p needs to meet two conditions: ̂ p belongs to a differ-

nt individual from p and 

˜ p , and the consisted triplet (p, ̃  p , ̂  p ) has

ositive loss, i.e. d(p, ̃  p ) − d(p, ̂  p ) + ζ > 0 . Let N be the negative

ample set for pair (p, ̃  p ) , we select M negative samples from N in

wo ways: hard negative selecting and random negative selecting. 

• Hard Negative Selecting: Hard negative samples mean that

they are much closer from p than other negative samples. Let

H be the set of hard negative samples, we have 

max 
h ∈ H 

d(p, h ) < min 

h ∈ N −H 

d(p, h ) . (12) 

We enforce that | H | = K. 
• Random Negative Selecting: As for other M − K negative sam-

ples, we randomly select them from N − H . 

The percentage of hard negative samples, η = K/M, is set as 0.5

n our experiments. For a selected negative sample ̂ p , two triplets

re generated: (p, ̃  p , ̂  p ) and ( ̃  p , p, ̂  p ) , thus providing 2 M triplets

or each similar sample pair. Note that we shuffle the training set

t the beginning of each epoch to generate appropriate triplets as

any as possible. 

After obtaining the selected triplets, we execute the fine-tuning

rocedure of the network through the back-propagation (BP) al-

orithm. The BP algorithm is implemented in the form of the

tochastic gradient descent where the momentum and the weight

ecay are set as 0.9 and 0.0 0 05, respectively. The learning rate of

he optimization is initialized as 0.001 and decreased according to

he polynomial policy with power value of 0.6. Besides, the size of

he mini-batch of the training samples is set as 64, and the total

umber of the iterations is 50,0 0 0. 

Overall, the training procedure follows a general-to-specific

eep transferring scheme to reduce the risk of over-fitting. We

se three types of image and video data during the entire train-

ng procedure: ImageNet, CASIA-WebFace, and the training video

et of specific individuals. As shown in Fig. 2 , the deep CNN is

rst trained by the ImageNet dataset to achieve good initializations

han random values. The large-scale face identity dataset, CASIA-

ebFace, is then used to further improve the robustness of the

ace feature extractor. Finally, the training set of specific domain

ace video shots is exploited to learn hash functions and fine-tune
he network. In this way, we adapt the deep CNN from the gen-

ral nature image domain to a specific face domain to reduce the

ncertainty and the diversity of representations. 

. Experiments 

.1. Dataset 

The ICT-TV dataset [27] which has two large-scale face video

hot collections is utilized to test the performance of the proposed

ethod. All the face video shots are collected from the whole first

eason of two popular American shows: the Big Bang Theory (BBT)

nd Prison Break (PB). The filming styles of the two TV-series are

uite different. The BBT is an indoor melodrama with only 5 main

haracters, and each episode lasts about just 20 min. In contrast,

he PB mostly takes place outside, and the average length of all the

pisodes is around 42 minutes, which leads to large illumination

ariations. The total number of face video shots of the two collec-

ions are 4,667 and 9,435, respectively. This dataset provides orig-

nal images of face frames rather than extracted features in previ-

us TV-series datasets, and each face frame is stored with size of

50 × 150. 

.2. Comparison methods and evaluation criterions 

We compare our approach with three types of the state-of-the-

rt methods to evaluate the performance: 

1. Hashing methods: LSH [29] , SH [32] , ITQ [33] , SITQ [33] , RR

[33] , SSH [36] and KSH [12] ; 

2. Face video retrieval methods: Hierarchical Hybrid Statistic

based Video Binary Code (HHSVBC) [27] and Spatial Pyramid

Covariance-based Compact Video Code (SPC-CVC) [28] ; 

3. Cross-domain face retrieval method: Hashing across Euclidean

space and Riemannian manifold (HER) [13] . 

For fair comparisons, all the comparison methods together with

ur method use the same training and testing sets, and the details

f splitting training and testing sets are elaborated in Section 5.3 .

he length of hash codes ranges from 8 to 256 to show the perfor-

ances of all these methods versus code lengths, and the perfor-

ance improvement is not obvious when the length of hash codes

s larger than 256. The parameters of the comparison methods are

arefully set for fair performance based on the suggestions in their

riginal publications. 

To evaluate the retrieval performance, four evaluation criteri-

ns are used: Precision Recall curve (PR curve), Precision curve

.r.t. Number of top returned samples (PN curve), Recall curve

.r.t. Number of top returned samples (RN curve) and mean Av-

rage Precision (mAP). In addition, the mAP curve w.r.t. hash code

ength (mAP curve) is presented to show the influence of hash

ode length to the mAP. All the reported results are the average

f 300 round of tests. It should be noted that the PR, PN and RN

urves only with hash code length of 128 as representative results

re presented in the main body of this paper for space limitations,

nd please find the complete experimental results in the supple-

entary material. 

.3. Results and discussions 

We conduct three experiments. The proposed Low-rank Dis-

riminative Binary Hashing (LDBH) method is first evaluated and

ompared with other the state-of-the-art hashing methods. Then,

e compare the performance of our method on the face video re-

rieval task with other methods and report the comparison results.

inally, the cross-domain face retrieval experiment is conducted. 
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Table 1 

Comparison mAPs of LDBH and other hashing methods. 

Methods the Big Bang Theory Prison Break 

8 bits 16 bits 32 bits 64 bits 128 bits 256 bits 8 bits 16 bits 32 bits 64 bits 128 bits 256 bits 

LSH [29] 0.29 0.39 0.58 0.70 0.78 0.85 0.09 0.12 0.16 0.24 0.29 0.38 

RR [33] 0.78 0.79 0.84 0.84 0.87 0.87 0.24 0.32 0.37 0.42 0.44 0.46 

ITQ [33] 0.84 0.85 0.87 0.88 0.89 0.90 0.31 0.39 0.45 0.48 0.49 0.50 

SH [32] 0.59 0.50 0.53 0.50 0.47 0.42 0.22 0.27 0.29 0.29 0.27 0.24 

SSH [36] 0.75 0.78 0.63 0.56 0.51 0.48 0.28 0.37 0.29 0.25 0.24 0.23 

KSH [12] 0.72 0.91 0.93 0.95 0.95 0.94 0.55 0.71 0.75 0.80 0.82 0.81 

SITQ [33] 0.80 0.88 0.92 0.92 0.93 0.93 0.39 0.56 0.62 0.65 0.65 0.62 

LDBH 0.97 0.96 0.97 0.99 0.99 0.99 0.58 0.73 0.79 0.83 0.85 0.85 

Fig. 5. Comparisons of PR, PN and RN curves between the LDBH and other hashing methods on two TV-series datasets. 
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5.3.1. LDBH performance 

Even though the LDBH is proposed to initialize the hash func-

tions of our network, it can be executed independently as a hash-

ing method. Similar to other hashing methods, the LDBH takes fea-

ture vectors as its input and outputs the corresponding hash codes

to keep the semantic similarities of the feature vectors. The per-

formance of the LDBH method is evaluated on both BBT and PB

datasets. To eliminate the influence of the frame representation fu-

sion, we compare the LDBH and other comparison methods on the

task of face image retrieval, i.e. , “image query & image database”. 

The 4096-dim features of face frames extracted through our

face feature extractor trained in the first step, i.e. , the AlexNet re-

trained on the WebFace dataset, are used for all these hashing

methods. On both BBT and PB, frames of 10 randomly selected face

shots per actor or actress are used as the training set, 10 frames

per main actor or actress are randomly selected to form the query

set, and 10,0 0 0 frames are randomly selected from the left frames

as the database for retrieval. The main actors and actresses of BBT

are Howard Wolowitz, Leonard Hofstadter, Penny, Raj Koothrappali

and Sheldon Cooper, and ones of PB are Benjamin Miles ‘C-Note’

Franklin, Brad Bellick, Fernando Sucre, Henry Pope, John Abruzzi,

Lincoln Burrows, Michael Scofield, Paul Kellerman, Sara Tancredi,

Theodore ‘T-Bag’ Bagwell and Veronica Donovan. 

 

a  
Table 1 shows the comparison mAPs between the LDBH and

ther hashing methods, and Fig. 5 shows the comparisons of PR,

N, RN and mAP curves. Among these hashing methods, LSH,

R, ITQ and SH are unsupervised methods, and other comparison

ashing methods and our LDBH are supervised methods. From the

able and figure, we find that supervised hashing methods out-

erforms unsupervised methods in most cases since the super-

ised methods take full advantages of the label information. The

ain reason of the phenomenon that the LDBH outperforms all

he other comparison methods is that the LDBH simultaneously

akes the low-rank property, the discriminative power and the sta-

ility of hash codes into account, and fuses them into a unified op-

imization framework for hashing performance improvements. By

he way, the reported PR, PN and RN curves are the average of the

etrieval results of randomly selected 10 × C queries where C rep-

esents the total number of the individuals. 

.3.2. Face video retrieval 

In this part, our method is tested on the task of face video re-

rieval whose query set and database are both consisted of face

ideo shots, i.e. , “video query & video database”. This experiment

s performed on both BBT and PB TV-series datasets. 

On both TV-series datasets, 10 random selected face shots per

ctor or actress are exploited as the training set, and the remaining
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Table 2 

Comparison mAPs of the face video retrieval experiment. 

Methods the Big Bang Theory Prison Break 

8 bits 16 bits 32 bits 64 bits 128 bits 256 bits 8 bits 16 bits 32 bits 64 bits 128 bits 256 bits 

LSH [29] 0.43 0.53 0.69 0.75 0.85 0.88 0.13 0.13 0.19 0.27 0.35 0.43 

RR [33] 0.83 0.87 0.84 0.86 0.89 0.91 0.28 0.38 0.42 0.46 0.49 0.51 

ITQ [33] 0.84 0.90 0.89 0.91 0.93 0.93 0.36 0.45 0.51 0.53 0.54 0.53 

SH [32] 0.64 0.54 0.56 0.53 0.49 0.44 0.26 0.31 0.33 0.33 0.29 0.27 

SSH [36] 0.81 0.82 0.68 0.60 0.56 0.53 0.34 0.44 0.33 0.28 0.27 0.26 

KSH [12] 0.83 0.91 0.94 0.94 0.94 0.94 0.50 0.62 0.63 0.70 0.72 0.75 

SITQ [33] 0.85 0.94 0.95 0.95 0.95 0.95 0.48 0.60 0.67 0.70 0.69 0.67 

HHSVBC [27] 0.51 0.59 0.67 0.68 0.72 0.74 0.14 0.15 0.16 0.16 0.18 0.20 

SPC-CVC [28] 0.52 0.65 0.73 0.75 0.77 0.79 0.14 0.15 0.17 0.19 0.21 0.23 

Ours (r.h.) 0.94 0.96 0.94 0.96 0.96 0.96 0.49 0.53 0.59 0.60 0.62 0.64 

Ours (p.h.) 0.95 0.97 0.98 0.98 0.97 0.98 0.75 0.78 0.76 0.79 0.83 0.83 

Fig. 6. Comparisons of PR, PN and RN curves of the face video retrieval experiment on two TV-series datasets. 

Table 3 

Comparison mAPs of the cross-domain face retrieval experiment. 

Type Methods the Big Bang Theory Prison Break 

8 bits 16 bits 32 bits 64 bits 128 bits 256 bits 8 bits 16 bits 32 bits 64 bits 128 bits 256 bits 

image query & video database LSH [29] 0.38 0.48 0.60 0.78 0.84 0.88 0.10 0.12 0.20 0.24 0.33 0.41 

RR [33] 0.86 0.84 0.57 0.59 0.56 0.54 0.28 0.36 0.41 0.47 0.48 0.48 

ITQ [33] 0.88 0.88 0.90 0.91 0.92 0.92 0.36 0.43 0.49 0.52 0.53 0.53 

SH [32] 0.67 0.57 0.59 0.56 0.54 0.49 0.26 0.32 0.35 0.34 0.30 0.27 

SSH [36] 0.80 0.83 0.70 0.62 0.56 0.54 0.34 0.43 0.33 0.28 0.27 0.25 

KSH [12] 0.84 0.90 0.93 0.93 0.94 0.94 0.50 0.59 0.60 0.68 0.69 0.71 

SITQ [33] 0.82 0.93 0.95 0.94 0.95 0.94 0.46 0.60 0.65 0.67 0.65 0.64 

HER [13] 0.80 0.88 0.90 0.91 0.93 – 0.35 0.45 0.56 0.65 0.68 –

Ours 0.94 0.97 0.97 0.97 0.98 0.98 0.65 0.71 0.71 0.75 0.80 0.81 

video query & image database LSH [29] 0.39 0.55 0.62 0.74 0.85 0.88 0.11 0.13 0.17 0.25 0.34 0.41 

RR [33] 0.86 0.87 0.88 0.88 0.90 0.90 0.30 0.37 0.41 0.47 0.49 0.48 

ITQ [33] 0.90 0.90 0.91 0.91 0.92 0.92 0.34 0.43 0.49 0.51 0.52 0.54 

SH [32] 0.69 0.59 0.61 0.58 0.53 0.49 0.27 0.32 0.34 0.33 0.30 0.28 

SSH [36] 0.82 0.84 0.72 0.64 0.58 0.54 0.34 0.44 0.33 0.29 0.27 0.26 

KSH [12] 0.85 0.92 0.93 0.94 0.95 0.94 0.49 0.59 0.60 0.68 0.69 0.72 

SITQ [33] 0.88 0.93 0.93 0.95 0.95 0.95 0.45 0.61 0.66 0.67 0.66 0.65 

HER [13] 0.84 0.87 0.90 0.91 0.91 – 0.39 0.50 0.57 0.64 0.66 –

Ours 0.94 0.97 0.98 0.98 0.98 0.98 0.65 0.72 0.70 0.75 0.80 0.80 
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Fig. 7. Comparisons of PR, PN and RN curves of the cross-domain face retrieval experiment (“image query & video database”) on two TV-series datasets. 

Fig. 8. Comparisons of PR, PN and RN curves of the cross-domain face retrieval experiment (“video query & image database”) on two TV-series datasets. 
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face video shots are used for testing. Same as Li et al. [28] , we fur-

ther select 10 face shots per main actor or actress from the testing

set randomly to form the query set, and the database is consisted

of the left face shots in the testing set. All the frames of the face

video shots in the training set are utilized to train our deep CNN,

and the representations of face shots in the testing set can be ob-

tained with the learned CNN for performance evaluation. 

The comparison methods consist of seven hashing methods and

two face video retrieval methods: HHSVBC [27] and SPC-CVC [28] .
able 2 lists the mAPs of our method and the comparison methods,

nd Fig. 6 depicts the comparisons of curves. 

For the seven hashing methods, the same fusion method as ours

escribed in Section 3 is utilized to obtain the final video hash rep-

esentation. For fair comparisons, these hashing methods use the

096-dim input features generated by our face feature extractor

rained in the first step, i.e. , the AlexNet retrained on the Web-

ace dataset. As shown in Table 2 and Fig. 6 , the proposed method

ignificantly outperforms other comparison methods, especially in



Z. Dong et al. / Pattern Recognition 81 (2018) 357–369 367 

t  

a  

p  

f  

t

 

e  

i  

s  

m  

t  

l  

m  

s  

i  

o  

c

 

m  

v  

l  

W  

a  

t  

m  

h  

f  

i

 

2  

H  

l  

c

5

 

a  

s  

i  

m  

t  

r  

t  

d  

t  

s  

t  

v  

 

i  

w  

m  

c  

t  

o  

s  

o  

l  

t  

t  

F  

d  

“  

m  

l  

t  

w  

a  

o  

r  

b  

d

6

 

n  

fi  

t  

i  

b  

fi  

p  

m  

t

A

 

d  

S

 

f

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

he case of small hash code length. The reasons mainly lie in two

spects: the initialization through the LDBH method which has su-

erior performances, and the fine-tuning mechanism to make the

ace feature extractor and hash functions optimally compatible for

he retrieval task. 

To verify the effectiveness of the pre-learned hash functions, we

xclude the second step of the training procedure, and use random

nitializations of hash functions for the fine-tuning procedure in-

tead of ones pre-learned by the LDBH method. The mAPs of our

ethod with random initializations of hash functions in Table 2 is

he line of “Ours (r.h.)”, and the mAPs of our method with pre-

earned hash functions is the line of “Ours (p.h.)”. The perfor-

ance difference between “Ours (p.h.)” and “Ours (r.h.)” demon-

trates the positive effect of pre-learned hash functions as initial-

zations of the fine-tuning procedure. It should be pointed out that

ur method even without pre-learned hash functions can achieve

omparable results with other methods. 

The face video retrieval methods, HHSVBC and SPC-CVC, use

ultiple size-variant covariance matrices calculated from fisher

ectors and raw intensities as video features, respectively, and

earn video hash representations from these covariance matrices.

e keep the experimental setting of our method same with them

nd report the results published in [28] . Our method outperforms

he HHSVBC and SPC-CVC methods. The main reason is that our

ethod simultaneously optimizes the face feature extractor and

ash functions for optimal compatibility, rather than uses fixed

eatures which has nothing to do with the hashing procedure as

nput. 

The HHSVBC and SPC-CVC methods extract features from the

0 × 16 gray images, which may have influence to the performance.

owever, it takes so large time and space for running them on

arger size face frames that the comparison experiment cannot be

onducted under current hardware conditions. 

.3.3. Cross-domain face retrieval 

As described above, the input to our deep CNN is a face frame,

nd the output is the corresponding compact binary hash repre-

entation. Each bit of the binary frame representation character-

zes the presence or absence of a face attribute, and has the same

eaning with the corresponding bit of the fused video represen-

ation. The frame binary representation and the video binary rep-

esentation thus lie in the same space, which provides the prac-

icability of face retrieval across the image domain and the video

omain. We conduct the cross-domain face retrieval experiment in

his section, i.e. retrieving face videos given the image of this per-

on, and its inverse task, retrieving face images given the video of

his person. These two cases are respectively called “image query &

ideo database” and “video query & image database” for simplicity.

Similar to Li et al. [13] , the face image is acquired by extract-

ng the medium frame of a face video. We compare our method

ith seven hashing methods and a cross-domain face retrieval

ethod, HER [13] . The experimental setting and the training pro-

edure are consistent with the face video retrieval experiment. All

he comparison methods extract features for face frames by using

ur trained face feature extractor. For the HER method, a face video

hot is characterized by the covariance matrix of extracted features

f its face frames. For comparison hashing methods, we first calcu-

ate the distances between the query face image and each frame of

he face video in database, and then integrate these distances by

aking the average. The comparison mAPs are depicted in Table 3 .

ig. 7 presents the comparison curves of the “image query & video

atabase” task, and Fig. 8 presents the comparison curves of the

video query & image database” task. The initialization of the HER

ethod picks several columns of kernel matrix, and the hash code

ength equals to the number of picked columns. However, the to-

al number of the columns of the kernel matrix keeps consistent
ith the number of training samples, i.e. , 140 for the BBT dataset

nd 190 for the PB dataset, which is smaller than 256. The results

f the HER method with hash code length of 256 thus cannot be

eported. Our method significantly outperforms other methods on

oth “image query & video database” and “video query & image

atabase” tasks. 

. Conclusion 

This paper presented a deep CNN for face video retrieval. The

etwork integrates feature extraction and hash learning into a uni-

ed optimization framework, which can guarantee that the fea-

ure extractor is optimally compatible with the followed hash-

ng. The proposed low-rank discriminative binary hashing achieved

etter initialization of the network for hash function learning. The

ne-tuning of the network after the initialization can further im-

rove the performance of face video retrieval. Extensive experi-

ents conducted on two challenging TV-Series datasets indicate

he effectiveness of the proposed network. 
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