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a b s t r a c t 

In this paper, we propose an unsupervised deep quantization (UDQ) method for object instance search. 

The UDQ utilizes product quantization to discover the underlying self-supervision information of the 

training data and iteratively exploits the self-supervision information to optimize features of the training 

data in an unsupervised fashion. The optimized features are further used to update the self-supervision 

information for the subsequent training procedure. We introduce two constraints, the separability con- 

straint and the discriminability constraint, to encourage the features to satisfy a cluster structure which is 

essential for the effective supervision information generation with the product quantization. The UDQ is 

optimized with an iterative optimization strategy which guarantees that the features and the supervision 

information can be enhanced each other alternately in a unified model. Moreover, we develop three re- 

finement strategies to refine features to obtain better supervision information for the model optimization. 

Experimental results on four datasets show the superiority of our UDQ over the state-of-the-art methods. 

© 2019 Elsevier B.V. All rights reserved. 
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1. Introduction 

Nowadays, due to the explosive growth of image data, many ad-

vances have been made for image retrieval tasks [1–3] . In prac-

tice, an image often contains multiple objects [4–6] , and each one

may occupy a small portion of the image. Thus, traditional image

retrieval methods measuring the whole image similarity with the

query would fail to capture the relevance between the query and

the small object. Motivated by users’ demand for instance-level im-

age retrieval, recently, object instance search has received increas-

ing interests [7–9] . Given a query object, object instance search

aims to retrieve all relevant images containing the specific object

and localize the object in the retrieved images. 

Since the diverse search requirements of different users are un-

predictable and the expensive manual annotations are unafford-

able, it is unrealistic to provide sufficient well-labeled training data

to train an instance search model, especially for the large-scale sce-

nario. Therefore, the object instance search is essentially an unsu-

pervised task. This means that the applicability of supervised or

semi-supervised approaches is rather limited for object instance

search. 

Recently, many unsupervised methods have been proposed for

object instance search. Among them, most methods [10–12] utilize
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and-crafted local features such as SIFT [13] and RootSIFT [14] ,

hile other methods [4,15,16] exploit Convolutional Neural Net-

ork (CNN) features and achieve better performance. However,

ost existing CNN based methods directly use the CNN models

hat pre-trained on the classification task to extract features,

hich limits the performance of the pre-trained models in the

bject instance search task. Some end-to-end object instance

earch methods adopt the unsupervised training by introducing

xtra training data [17] . However, these CNN based methods have

ot taken full advantage of the underlying supervision information

f the data. Thus, how to design an effective model for the robust

nstance search in an unsupervised fashion is still a challenging

ssue. 

To solve this problem, we propose to use the product quantiza-

ion to generate effective supervision information for unsupervised

odel learning based on two observations. First, the product

uantization methods [18–20] can provide guidance for the search

odel. In these methods, the feature space is divided into a set of

ubspaces and each feature is represented by a Cartesian product

f several codewords in the subspace. The similar features are

rouped into the same cluster and assigned the same codeword

ndices. The indices actually can be seen as pseudo labels for the

odel training, which inspires us to explore the practicability of

tilizing the product quantization to generate supervision infor-

ation. Second, the quality of the product quantization largely

epends on the quantizability of the input features. The input

eatures exhibiting a cluster structure can be quantized accurately

21] . 
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Fig. 1. An overview of our object instance search process. In the off-line training stage, the UDQ model is optimized through a two-module training procedure and generates 

codebooks and compact codes from the training data. In the on-line search stage, the query object is first input to the trained UDQ model to generate its feature and the 

distance lookup tables. The search results are finally obtained by similarity ranking according to the lookup tables and the compact codes. 
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Motivated by these observations, we present an unsupervised

eep quantization (UDQ) method for object instance search. Fig. 1

epicts the framework of our method: the off-line training stage

nd the on-line search stage. The first stage trains a UDQ model

nd generates both codebooks and the compact code for each

roposal that is generated from images. The second stage uti-

izes the trained UDQ to generate the representation of the query

nd conducts the efficient search based on distance look-up ta-

les. Fig. 2 illustrates the training procedure of the UDQ. It

lternately optimizes the features and makes them exhibit a clus-

er structure, and generates more effective supervision informa-

ion for the subsequent training procedure. The training procedure

f the UDQ includes two modules: quantization model initializa-

ion and self-supervised model optimization. In the first module,

he UDQ generates a set of proposal features and exploits product

uantization to generate self-supervision information to initialize

he model. The second module iteratively carries out two steps:

elf-supervision information updating and feature optimization un-

il the stopping criterion is met. 

In order to encourage the features to satisfy a cluster structure

or product quantization, we introduce two constraints, the sepa-

ability constraint and the discriminability constraint, in the train-

ng stage. Meanwhile, the iterative optimization strategy enables

he features and the supervision information to be optimized in

 unified model, and they alternately enhance each other in an

nsupervised manner. In this way, the UDQ is optimized with more

ffective supervision information and is able to generate more ef-

ective and discriminative features. Furthermore, to better guide

he model training, we develop three refinement strategies to en-

ich each feature with its similar features and further discover bet-

er supervision information. 

After the training stage, the codebooks and compact codes of

he reference images are generated. Thanks to the introduction of

he product quantization, the UDQ possesses high search efficiency

n both time and memory. The entire search procedure is shown

n Fig. 1 . For a given query object, the UDQ generates its feature

nd the corresponding distance lookup tables. The search results

re obtained by similarity computing and ranking according to the
ookup tables and the compact codes. The complexity of the sim-

larity computation is O(1) by looking up for the distance tables.

o evaluate the effectiveness of the UDQ method, we conduct a

eries of experiments on four widely used object instance search

atasets. Experimental results show the approving capability of the

DQ for object instance search. 

In summary, our contributions are two-fold. 

• We propose an effective unsupervised deep quantization

method that iteratively utilizes product quantization to gen-

erate self-supervision information and exploits the self-

supervision information to guide the model learning in an

unsupervised fashion. To the best of our knowledge, the

UDQ is the first study of unsupervised deep quantization for

object instance search. 

• We develop three feature refinement strategies to obtain

better supervision information for the model training. Each

feature is enriched by fusing with its top-ranked similar fea-

tures to generate a more discriminative one for better super-

vision information generation. 

. Related work 

Existing work for object instance search can be roughly divided

nto two categories: methods based on the hand-crafted features

nd methods based on the CNN features. The methods based on

and-crafted features [10–12] extract local features, such as the

IFT [13] and RootSIFT [14] , and learn a codebook off-line. They

ncode each local feature to its nearest codeword or the combi-

ation of some codewords by bag-of-words(BoW) [22] , vector of

ocally aggregated descriptors (VLAD) [23] , or fisher vector (FV)

24] , etc . In addition, the inverted index and binary signatures

an be adopted for fast search [25–27] . For instance, Zhang et al.

11] first extracted the SIFT features and built a visual vocabulary

ree [28] by hierarchical K-means clustering of the SIFT features.

hen they leveraged semantic attributes to update the inverted in-

exes obtained by the visual vocabulary tree and achieved more

atisfactory retrieval results. 
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Fig. 2. Our method follows a two-step training procedure. In the first step(top row), the UDQ first generates codebooks and indices (blue solid arrow) according to the 

output of RPN and then exploits the codebooks and indices as supervision information to initialize the network with the separable loss and the discriminative loss ( L dis and 

L sep in blue dash arrow). With the initialized network, in the second step(bottom row), the UDQ iteratively generates codebooks and indices (green solid arrow) according 

to the output of the “FC_S” layer and further optimizes the network ( L dis and L sep in green dash arrow) until the stopping criterion is satisfied. Best viewed in colour. 
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Qin et al. [10] proposed a probabilistic framework for model-

ing the similarity of two local features such as the SIFT. In this

way, a query adaptive distance measurement can be adopted to

derive a global similarity between two images. Shi et al. [12] pro-

posed to early detect the visual bursts in an image off-line, and the

descriptors were quantized, encoded and searched as usual. Their

method promoted the performance of the state-of-the-art image

search methods such as VLAD and the selective match kernel [29] .

In recent years, the hand-crafted feature seems to be overtaken

by the convolutional neural network (CNN) in many vision tasks

[1–3,30–34] due to the powerful abilities on learning discrimi-

native high-level representations. In the object instance search,

more and more methods based on deep neural networks are

proposed with significant performance improvements than tradi-

tional hand-crafted feature based object instance search methods.

The methods based on the CNN features can be further divided

into two categories: the two-step method and the end-to-end

method. The two-step method [4,35] first uses the pre-trained

CNN models to extract features and then encode the features

for object instance search. The CNN models are based on differ-

ent network architectures, including AlexNet [36] , VGGNet [37] ,

GoogleNet [38] and ResNet [39] , etc . Moreover, different layers of

the deep network always exhibit different retrieval performance,

for example, the top layers may exhibit lower generalization ability

than the layer before it [40] . In particular, Zheng et al. [41] and

Tolias et al. [4] proved that the visual representations extracted

from the activations of the last convolutional layer perform better

than the representations extracted from the fully connected layers,

as they convey the image spatial information. With this idea,

Tolias et al. [4] proposed a compact image representation that

was derived from the convolutional layer activations and encoded
ultiple image regions. Razavian et al. [42] exploited multi-scale

chemes to extract local features and demonstrated the superiority

f the image representations that are generated from the generic

onvolutional networks. Kalantidis et al. [43] proposed an image

epresentation generation method by cross-dimensional weight-

ng and aggregation of convolutional layer activations. Jimenez

t al. [15] proposed a local-aware encoding method based on

emantic information predicted in the target images and achieved

tate-of-the-art performance. 

The end-to-end methods integrate the feature extraction and

ncoding into a unified framework to achieve better performance.

or instance, Babenko et al. [17] designed a deep convolutional net-

ork. It proves the utilization of the image representations that

re derived from the top layer of a convolutional network can pro-

ide high-level descriptors of the images. Their method also shows

hat the retrieval performance can be improved by re-training the

etwork with a dataset that is similar to the retrieved images.

alvador et al. [5] took advantage of the fine-tuned Faster R-CNN

etwork [44] for end-to-end representation generation. It demon-

trates that fine-tuning an object detector on the target dataset

ndeed improves the instance search accuracy. Radenovic et al.

16] built a three-stream Siamese network based on the R-MAC

ethod [4] to learn features for object instance search. In addi-

ion, Song et al. [7] proposed a deep region hashing method for

bject instance search. Their method avoids matching a query and

he reference images with real-valued features by utilizing hashing

o generate binary codes, which significantly improves the search

fficiency. Different from these methods, we utilize the product

uantization to generate self-supervision information and optimize

he self-supervision information through an iterative optimization

trategy in an unsupervised fashion. 
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Table 1 

The list of the notations used throughout the paper. 

Symbol Definition 

N The number of reference images in the dataset 

T The number of proposals generated from an image 

G The number of proposals generated from the image dataset 

M The number of subspaces in the product quantizationv 

K The number of codewords in each subspace 

S The number of similar proposals in the refinement strategies 

d The dimension of a feature 

d m The dimension of a sub-feature in the m th subspace 

X = { x i } N i =1 
The set of reference images 

P = { p t } G t=1 The set of proposals 

F = { f t } G t=1 The feature set of the proposals 

H = { h t } G t=1 The compact code set of the proposals 
˜ F = { ̃  f t } G t=1 The set of quantized features 

Y = { y t } G t=1 The set of one-hot labels 

C The codebook as shown in Eq. (6) 

q A query object 

h m t The codeword index of the t th proposal in the m th subspace 

f t ∈ R d The feature of a proposal 

c t ∈ R d The feature of the corresponding codeword 

h t ∈ R M The compact code of a proposal ˜ f t ∈ R d The quantized feature of a proposal 

y m t ∈ R k The one-hot label of a proposal 
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. Unsupervised deep quantization method 

.1. Problem formulation 

Object instance search aims to retrieve all the reference images

ontaining the specified query object and localize it in these ref-

rence images. We list the notations and the corresponding defi-

itions in Table 1 . Suppose that we have N reference images X =
 x i } N i =1 

and each image x i has T proposals P i = { p i, j } T j=1 
. The simi-

arity between a query q and a reference image x i is defined by the

imilarity between the query and the best-matched proposal p ∗
i 

in

 i , which is given by 

im (q, x i ) = max 
j 

Sim (q, p i, j ) . (1)

im ( q, p i,j ) is expressed as 

im (q, p i, j ) = 

1 ∥∥ f q − f p i, j 

∥∥
2 

, (2)

here f q and f p i, j 
denote the features of the query q and a pro-

osal p i,j of the reference image x i , respectively. 

In the quantization based object instance search, the fea-

ure space is decomposed into the Cartesian product of low-

imensional subspaces and each feature f is divided into M sub-

eatures as f = [ f 1 , f 2 , . . . , f M ] ∈ R 

d . Each sub-feature is quantized

nto a codeword and the feature f is approximated by the quantizer

unction φ( · ) defined as 

( f ) = [ c 1 h 1 , c 
2 
h 2 , . . . , c 

M 

h M ] , (3)

nd h m is defined as 

 

m = arg min 

k 

‖ c m 

k − f m ‖ 2 , (4)

here c m 

k 
(m = 1 , 2 , . . . , M, k = 1 , 2 , . . . , K) denotes the k th code-

ord from the m th codebook, M is the number of subspaces, and

 represents the number of codewords in each subspace. 

After that, benefiting from the asymmetric distance computa-

ion method [18] , the similarity between the query q and the ref-

rence image x i is approximated by 

im (q, x i ) = 

1 ∥∥ f q − φ( f p ∗
i 
) 
∥∥ . (5)
2 
To simplify the formulation, we define G = N × T is the num-

er of the proposals generated from the N reference images, thus

he proposal set can be rewritten as P = { p t } G t=1 
. We further in-

roduce F = { f t } G t=1 
and H = { h t } G t=1 

to denote the features and in-

ices of the proposals, respectively. Under this circumstance, the

ey problem of achieving effective object instance search perfor-

ance is how to jointly optimize the proposal features F and the

uantizer which can be represented by the learning of codebooks

and indices H in an unsupervised manner. 

.2. Self-supervision information generation 

The object instance search is essentially an unsupervised task.

herefore, it is unrealistic to provide enough well-labeled train-

ng data for network learning, which motivates us to discover the

nderlying self-supervision information from the training data to

rain the UDQ model. 

Given a set of features F = { f t } G t=1 
, we exploit the optimized

roduct quantization [19] to generate codebooks and indices of

he features. The key idea is to minimize the quantization error

 pq (F ) , given by 

L pq (F ) = 

G ∑ 

t=1 

‖ f t − c t ‖ 

2 
2 , 

s.t. c t ∈ C = { c| R c ∈ C 1 × C 2 × · · · × C M , R 

T R = I} , (6) 

here ‖ · ‖ 2 denotes the l 2 -norm, C m is the codebook of the m th

ubspace, R denotes a rotation matrix and I refers to an identity

atrix. 

By minimizing the quantization error, the compact codes

 = { h t } G t=1 
and the codewords C are generated at the same

ime, where h t = [ h 1 t , h 
2 
t , . . . , h 

M 

t ] ∈ R 

M . The quantized features ˜ F =
 ̃

 f t } G t=1 
can be calculated by ˜ f t = φ( f t ) according to Eq. (3) . We

ssign a one-hot label y m 

t for each sub-feature f m 

t according to

he h m 

t to present the codeword index of f m 

t in the m th subspace.

pecifically, the h m 

t th bit of y m 

t is 1 and the others of y m 

i 
are 0. The

 = { y t } G t=1 
and the ˜ F = { ̃  f t } G t=1 

are utilized as self-supervision in-

ormation to optimize the UDQ model in an unsupervised manner.

.3. Model optimization 

Fig. 2 shows the architecture of the UDQ model which can be

uilt on different backbone networks. The proposed UDQ consists

f a set of convolutional layers, a Region Proposal Network (RPN)

44] , a region of interest (RoI) pooling layer, and a set of fully-

onnected layers. Then the FC_cls layer and the FC_reg layer are

tilized to conduct two constraints. Since the features extracted

rom the RPN may not be readily applied to generate efficient rep-

esentations for object instance search, we devise a two-module

raining procedure to alternately update the features and the su-

ervision information in a unified model as shown in Fig. 2 . 

In the first module, the UDQ generates self-supervision infor-

ation by minimizing the quantization loss L pq of the RPN output

ccording to Eq. (6) . We introduce the separability constraint L sep 

o separate the dissimilar features into different clusters, and the

iscriminability constraint L dis to pull the similar features in the

ame cluster closer to their center. Therefore, the UDQ model is

ptimized with a joint loss function defined as 

 = L sep + λL dis , (7)

here λ is the hyper-parameter to balance the two supervision

ignals. L sep and L dis are formulated as 

 sep = −
M ∑ 

m =1 

G ∑ 

t=1 

log 
e 

W 

T 
m,h m 

t 
f m t + b m,h m 

t 

∑ K 
l=1 e 

W 

T 
m,l 

f m t + b m,l 

, (8) 
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L dis = 

M ∑ 

m =1 

G ∑ 

t=1 

∥∥∥ f m 

t − ˜ f m 

t 

∥∥∥2 

2 
, (9)

where ‖ · ‖ 2 denotes the l 2 -norm. M represents the number of

subspaces and K is the number of codewords in each subspace.

f m 

t ∈ R 

d m denotes the m th part of f m 

t in the m th subspace. h m 

t 

denotes the codeword index of f m 

t . W m 

∈ R 

d m ×K is weights and

b m 

∈ R 

K is the bias term. ˜ f m 

t ∈ R 

d m denotes the quantized f m 

t in

the m th subspace. 

In the second module, the UDQ first generates self-supervision

information by minimizing the L pq of the FC_S layer output ac-

cording to Eq. (6) . Then we exploit the joint loss function according

to Eq. (7) to optimize the features with the updated supervision in-

formation. The second module iteratively conducts the supervision

information updating and the feature optimization until the stop-

ping criterion is satisfied. 

With the two constraints, the features are trained to be more

discriminant and encouraged to satisfy a cluster structure for the

product quantization. Thus, the UDQ can learn better quantizers for

the subsequence supervision information generation. The iterative

optimization strategy iteratively optimizes the features and the su-

pervision, and leads to more effective supervision information for

the model training. In addition, thanks to the introduction of the

product quantization, the UDQ can generate nearly cost-free com-

pact representations. 

As a result, the final features F , the codebooks C and com-

pact representations H for the reference images X = { x i } N i =1 
are ob-

tained by solving 

�(X , �) = {F, C, H} , (10)

where �( · ) denotes the forward propagation process and � de-

notes the parameters of the UDQ. Overall, the training procedure

of the UDQ is summarized in Algorithm 1 . 

Algorithm 1: Unsupervised Deep Quantization. 

Input : Reference images X = { x i } N i =1 
; iteration times max . 

Output : Final features F max ; codebooks C; compact codes H. 

1 Generate the proposal features F 0 = { f t } G t=1 
from the RPN; 

2 Generate the initial self-supervision information Y 0 and 

˜ F 0 

by minimizing L pq in Eq. (6) using F 0 ; 

3 Initialize the deep quantization model parameters � with 

loss function L in Eq. (7) with respect to the Y 0 and 

˜ F 0 ; 

4 for i = 1 : max do 

5 Generate the self-supervision information Y i and 

˜ F i by 

minimizing L pq in Eq. (6) using the output F i of the FC_S 

layer; 

6 Update the deep quantization model parameters � by 

loss function L in Eq. (7) with respect to Y i and 

˜ F i ; 

7 end 

8 Generate the final features F max , the final codebooks C and 

the compact codes H; 

9 Return F max , C, H. 

3.4. Feature refinement 

Traditional re-ranking methods, such as average query expan-

sion (AQE) [45] , have shown their superiority in improving the

search results. With the re-ranking strategies, the initial search re-

sults are refined by using the top-ranked retrieved images to fuse

and create a new query. In this way, the new ranking results are

obtained with a kind of blind relevance feedback and lead to a

higher recall. Inspired by this, we develop three feature refine-

ment strategies to discover better supervision information. For a
eature f t ∈ R 

d (t = 1 , 2 , . . . , G ) in F , the refinement strategies are

resented as follows. 

• Brute-Force Refinement (BFR). We treat each f t as a query

to perform a whole proposal set matching and ranking pro-

cess. In this way, the ranking results will introduce relevance

feedback of the similar proposals to refine each feature. We

use f P s to denote the feature of f t ’s s th nearest object pro-

posal P s . The BFR refines a proposal’s feature f t by its top- S

similar proposals in the proposal set, which is given by 

̂ f t = 

f t + 

∑ S 
s =1 f P s 

S + 1 

. (11)

• Proposal Based Refinement (PBR). We first perform the k-

means method on the proposal set, and encode each f t to

its nearest codeword C f t . Given an object proposal’s feature

f t , the PBR only takes object proposals assigned to the same

codeword C f t into consideration. We use f P ∗s to denote the

feature of f t ’s s th nearest object proposal among the propos-

als assigned to C f t . PBR refines f t by its top- S similar object

proposal assigned to the same codeword C f t , which is given

by 

̂ f t = 

f t + 

∑ S 
s =1 f P ∗s 

S + 1 

. (12)

• Center Based Refinement (CBR). Similar to the PBR, each f t 
in CBR is first encoded to its nearest codeword C f t by the

k-means. Then 

̂ f t is directly calculated by 

̂ f t = 

f t + f C f t 
2 

, (13)

where f C f t 
presents the feature of C f t . 

With the refinement strategies, each feature is enriched with

imilar features. In this way, the supervision information generated

rom the refined features is more effective, which leads to better

odel optimization with multiple iterations. The experiments val-

date the effectiveness of the feature refinement. 

Among the three refinement strategies, the BFR is supposed to

e the most effective since the exhaustive searching and ranking

rocess guarantees the most relevant features are used to refine

he original features. In contrast, the PBR and the CBR significantly

mprove the efficiency of the whole training stage by exploiting the

eatures that belong to the same cluster for the refinement. 

.5. Object instance search 

In the object instance search task, we need to compute the dis-

ance between the query representation and each reference image

epresentation to determine whether they are similar. The entire

earch procedure is shown in Fig. 1 . After the representation of the

uery q generated from the trained UDQ, the distance lookup ta-

les are first built based on the distance between the query and

he codewords. Then the similarity between the query q and the

eference image x i can be obtained by looking up the distance ta-

les according to Eq. (5) . Finally, the similarity between the query

nd all reference images is computed and ranked to obtain the

earch results, and the position of the best similar proposal in each

eference image indicates the position of the query object in that

mage. 

Taking advantage of the product quantization, the UDQ can

btain nearly cost-free codebooks and compact codes from the

odel. Thus, it only takes M log 2 ( K ) bits to store a compact rep-

esentation h p t for the proposal p t , where M and K are the

ubspace number and the codeword number in each subspace, re-

pectively. Moreover, benefiting from the lookup tables, the com-

utational complexity of computing the distance between a query
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s  

o  
nd a proposal is O(1) . As a result, the UDQ significantly boosts

he efficiency in both time and memory. 

. Experiments 

We provide a comprehensive comparison with various base-

ines and state-of-the-art methods on four object instance search

atasets, the Oxford5K dataset [46] , the Oxford105K dataset [46] ,

he Paris6K dataset [47] and the Paris106K dataset [47] . 

.1. Datasets 

The Oxford5K dataset [46] contains 5063 images that download

rom Flickr and each image is named by a landmark in Oxford. It

as 55 query images in 11 classes and each query is an object im-

ge cut from one big image with its ground truth bounding box.

e further add 100K distractor images called Flickr100K [47] that

ownload from Flickr to compose the Oxford105K dataset for test-

ng the scalability of our method on the large-scale image search

cenario. 

The Paris6K dataset [47] contains 6392 images. Each of them

s download from Flickr and describes a specific Paris architec-

ure. Since each landmark has 5 queries, there are 55 query images

ith bounding boxes as well. Similar to the Oxford105K dataset,

e compose the Paris106K by adding the Flickr100K dataset to the

aris6K dataset. 

To better localize the object in the images, we follow the Ren

t al. [44] to pre-train the RPN on the PASCAL VOC 2007 dataset

48] . It is a widely used dataset for object detection and contains

963 images of 20 classes including animals, person, vehicle and

ndoor objects. This dataset consists of about 5K trainval images

nd 5K test images. We train the RPN on the VOC 2007 trainval

mages. 

.2. Experiment setting 

The UDQ is built on different backbone networks, we utilize

wo widely used networks VGG16 [37] and ResNet101 [39] as our

ackbones to make fair comparisons with the existing methods

dopting the same architectures. The VGG16-based UDQ consists

f 5 groups of convolutional layers and 4 max-pooling layers. The

esNet101-based UDQ consists of 4 building blocks and each build-

ng block is comprised from a set of convolutional layers. Both of

he networks are followed by a RPN, a ROI pooling layer, and three

ully-connected layers. 

The backbone networks are pre-trained on the ImageNet

ataset to initialize the convolutional layers. Then we fix the back-

one network and train the RPN on PASCAL VOC dataset [49] . Fol-

owing Salvador et al. [5] , we reshape the whole query images so

hat their shorter sides are 600 pixels while their longer size af-

er the reshape are smaller than 10 0 0 pixels. The reshaped query

mages are used for fine-tuning all the convolutional layers except

or the first two convolutional groups with a learning rate of 0.001.

n the off-line training stage, we perform the PCA to reduce the

imension of features to 300 before the supervision information

eneration. The learning rate for the UDQ training is 0.001 as well.

n the on-line search stage, the mean Average Precision (mAP) is

dopted as the evaluation metric to comprehensively evaluate the

erformance. For each reference image, 200 proposals are gener-

ted. 

.3. Results and discussion 

.3.1. The effect of the training strategies 

We devise a two-module training stage as shown in Fig. 2 . The

rst module is an initialization module and the second module
s an iterative updating module. We first evaluate the effect of

he iteration times in the second module by comparing the pro-

osed UDQ with two methods: “Off-the-shelf” and the “Off-the-

helf-OPQ”. The former one directly uses the off-the-shelf features

rom the fine-tuned ROI feature maps and the latter further con-

ucts optimized product quantization (OPQ) on the off-the-shelf

eatures from the ROI feature maps. The UDQ is first initialized

ith the quantization model initialization module, and the search

esults about the iteration times of the second module are shown

n Fig. 3 . We conduct experiments on the VGG16-based UDQ and

he ResNet101-based UDQ on Oxford5K and Paris6K dataset. In all

ases, the subspace number is fixed as 4 and the codeword num-

er in each subspace is fixed as 256. 

From Fig. 3 , not surprisingly, the performance of the compact

Off-the-shelf-OPQ” representations is worse than the real-valued

Off-the-shelf” representations. This is mainly caused by the infor-

ation loss brought by the quantization. When the UDQ is only

rained with the quantization model initialization module, the re-

ults perform worse than “Off-the-shelf-OPQ”. The main reason is

hat a single iteration of the self-supervised optimization is in-

ufficient to make full use of the underlying information of the

ata. When the iteration is 1, the UDQ achieves more than 10%

mprovement on both datasets. Interestingly, we find the perfor-

ance of the proposed UDQ saturates when the iteration increases

eyond 2. Taking both effectiveness and efficiency into consid-

ration, we choose to iterate 2 times in the second module by

efault. 

To further validate the effectiveness of the UDQ training strate-

ies, we compare the off-the-shelf-OPQ results and the UDQ re-

ults when using different subspace numbers and sub-center num-

ers. The results based on the VGG16 model and the Oxford5K

ataset are shown in Table 2 . We observe that the UDQ signifi-

antly promotes the search performance, which proves that it in-

eed generates effective supervision information for the model

raining. 

.3.2. The effect of the hyper-parameters 

In this section, we evaluate the influence of the hyper-

arameters in this paper. The λ is used to balance the importance

f the two constraints. The subspace subspace number M and the

odeword number K in each subspace dominate the effectiveness

f the supervision information and the dimension of the compact

odes generated from the UDQ together. All of them are essential

o our method. So we conduct two experiments to investigate the

ensitiveness of these parameters. 

First, we fix the subspace number as 4 and the codeword num-

er in each subspace as 256 to validate the sensitive of the λ. The

esults are shown in Fig. 4 . We vary λ among { 10 −5 , 10 −4 , 10 −3 ,

0 −2 } and conduct experiments on both the Oxford5K dataset and

he Paris6K dataset with the VGG16-based UDQ model. We observe

hat the performance of the UDQ largely depends on the hyper-

arameter λ. The best performance is achieved when λ is set as

.01 in both of the two datasets, in which case the two losses are

oughly equally weighted. It should be noted that we did not con-

uct experiments with larger λ, since the UDQ is difficult to be

rained when the λ is larger than 0.01. This is mainly because the

 dis dominates the training. As aforementioned, the L sep is used to

eparate the dissimilar features into different clusters, and L dis fur-

her encourages the similar features closer to their center. In other

ords, the L dis depends on the L sep . As a result, we set λ as 0.01

n the following experiments. 

Then we vary M among {2, 4, 8}, and vary K among {64, 128,

56, 512}. The results are shown in Tables 3 and 4 , and we high-

ight the best results in each column. We observe that the re-

ults based on the ResNet101 always better than the results based

n the VGG16, which is reasonable due to the more general and
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Fig. 3. The influence of the iteration times in the second training module using the VGG16-based UDQ model and the ResNet101-based UDQ model on the Oxford5K dataset 

and the Paris6K dataset. 

Table 2 

The influence of the training strategies on the Oxford5K dataset using the VGG-based 

model. 

Subspace numbers Compact codes Off-the-shelf-OPQ results UDQ results 

M = 2 12bit 0.494 0.514 

14bit 0.682 0.697 

16bit 0.746 0.771 

18bit 0.779 0.815 

M = 4 24bit 0.633 0.673 

28bit 0.687 0.743 

32bit 0.730 0.838 

36bit 0.781 0.868 

M = 8 48bit 0.640 0.744 

56bit 0.689 0.801 

64bit 0.743 0.855 

72bit 0.766 0.873 
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Fig. 4. The influence of the λ in the training stage using the VGG16-based UDQ model on the Oxford5K dataset and the Paris6K dataset. 

Table 3 

The influence of parameters on the Oxford5K dataset and the Oxford105K dataset using the 

VGG16-based UDQ model and the ResNet101-based UDQ model. 

Subspace number Compact codes VGG16-based UDQ ResNet101-based UDQ 

Oxford5K Oxford105K Oxford5K Oxford105K 

M = 2 12bit 0.514 0.491 0.643 0.620 

14bit 0.697 0.679 0.751 0.732 

16bit 0.771 0.755 0.813 0.798 

18bit 0.815 0.805 0.836 0.824 

M = 4 24bit 0.673 0.661 0.704 0.686 

28bit 0.743 0.728 0.766 0.751 

32bit 0.838 0.829 0.857 0.848 

36bit 0.868 0.861 0.876 0.869 

M = 8 48bit 0.744 0.734 0.770 0.764 

56bit 0.801 0.794 0.824 0.817 

64bit 0.855 0.849 0.869 0.865 

72bit 0.873 0.870 0.887 0.883 

Table 4 

The influence of parameters on the Paris6K dataset and the Paris106K dataset using the 

VGG16-based UDQ model and the ResNet101-based UDQ model. 

Subspace Number Compact Codes VGG16-based UDQ ResNet101-based UDQ 

Paris6K Paris106K Paris6K Paris106K 

M = 2 12bit 0.645 0.621 0.674 0.651 

14bit 0.769 0.748 0.772 0.753 

16bit 0.821 0.807 0.843 0.827 

18bit 0.844 0.839 0.871 0.867 

M = 4 24bit 0.747 0.733 0.759 0.745 

28bit 0.841 0.835 0.858 0.850 

32bit 0.865 0.857 0.871 0.859 

36bit 0.863 0.851 0.872 0.863 

M = 8 48bit 0.818 0.802 0.835 0.821 

56bit 0.854 0.849 0.869 0.862 

64bit 0.863 0.855 0.877 0.871 

72bit 0.859 0.851 0.875 0.869 
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owerful ability of the ResNet101 to provide effective features, and

t will improve the supervision information quality in the train-

ng stage. For the Oxford5K dataset and the Oxford105K dataset,

he best results are obtained when M = 8 and K = 512 , which is

xpected due to two aspects. First, in the off-line training stage,

he more subspaces and codewords lead to richer codebooks and

ess information loss. Thus it provides more effective supervision

nformation for the UDQ model training. Second, in the on-line

earch stage, better quantization quality and finer cluster partition
ignificantly improve the search results. For the Paris6K dataset

nd Paris106K dataset, the best results are obtained when M = 4

nd K = 256 based on the VGG16 and M = 8 and K = 256 based

n the ResNet101. This is mainly caused by the over-fitting when

oth M and K are large. By default, on the following experiments,

e set the ResNet101 as the backbone network, the M and K are

et as 8 and 512 when testing on the Oxford5K dataset and the

xford105K dataset, and 8 and 256 when testing on the Paris6K

ataset and the Paris106K dataset. 
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Table 5 

Comparison mAPs of the proposed UDQ and the state-of-the-art compact descriptor based methods 

on four datasets. For each dataset, the two columns show the performance without (W/O) and with 

(W) post-processing strategies, respectively. We highlight the best result (bold) and the second-best 

result (italic) on each dataset. 

Methods Oxford5K Oxford105K Paris6K Paris106K 

W/O W W/O W W/O W W/O W 

Mikulik et al. [50] 0.742 0.849 0.674 0.795 0.749 0.824 0.675 0.773 

Qin et al. [10] 0.780 0.850 0.728 0.816 0.736 0.855 N/A N/A 

Zhang et al. [11] 0.687 N/A 0.605 N/A N/A N/A N/A N/A 

Shi et al. [12] 0.813 N/A 0.689 N/A 0.775 N/A N/A N/A 

Zhang et al. [51] 0.816 N/A 0.761 N/A 0.836 N/A 0.788 N/A 

Song et al. [7] 0.783 0.851 N/A 0.825 0.801 0.849 N/A 0.802 

Yang et al. [9] 0.831 0.851 0.795 N/A 0.849 0.872 0.734 N/A 

Do et al. [52] 0.703 0.742 0.447 0.622 N/A N/A N/A N/A 

Zhang et al. [53] 0.809 0.836 N/A N/A 0.796 0.814 N/A N/A 

UDQ-Baseline 0.887 0.883 0.877 0.871 

UDQ-PBR 0.893 0.890 0.885 0.878 

UDQ-CBR 0.891 0.886 0.893 0.889 

UDQ-BFR 0.901 0.897 0.900 0.893 

Table 6 

Comparison mAPs of the proposed compact descriptor based UDQ and real-valued descriptor based the state-of-the-art 

methods on four datasets. For each dataset, the two columns show the method performance without (W/O) and with 

(W) post-processing strategies, respectively. We highlight the best result (bold) on each dataset. 

Methods Code length Oxford5K Oxford105K Paris6K Paris106K 

W/O W W/O W W/O W W/O W 

Tolias et al. [4] 512d 0.669 0.773 0.616 0.732 0.830 0.865 0.757 0.798 

Razavian et al. [42] 15k/32k 0.655 0.843 0.489 N/A 0.685 0.879 N/A N/A 

Kalantidis et al. [43] 512d 0.708 0.749 0.653 0.706 0.797 0.848 0.722 0.794 

Jimenez et al. [15] 512d 0.736 0.811 0.672 0.769 0.855 0.874 0.733 0.800 

Radenovic et al. [16] 512d/2048d 0.878 0.910 0.846 0.895 0.927 0.955 0.869 0.919 

UDQ-BFR 8bytes/9bytes 0.901 0.897 0.900 0.893 
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4.3.3. The effect of the feature refinement strategies 

We evaluate the feature refinement strategies and the results

are shown in Table 5 . “UDQ-Baseline” refers to the UDQ model that

is trained without any refinement. We choose top-50 and top-10

feedbacks to refine the features in PBR and BFR, respectively. 

From Table 5 , we have the following observations: (1) All of

the feature refinement strategies can significantly improve the per-

formance of the baseline UDQ model, which demonstrates bet-

ter supervision information has been obtained. (2) The BFR per-

forms best thanks to its exhaustive ranking process. (3) The PBR

and the CBR keep satisfied performance while significantly reduc-

ing the computational complexity of the BFR. Overall, the feature

refinement strategy is able to obtain better supervision informa-

tion for the model training and it effectively improves the search

performance. 

4.3.4. Comparisons with the state-of-the-art methods 

To evaluate the effectiveness of our method, we compare the

UDQ with the state-of-the-art methods on four datasets. We

divide the comparison methods into compact descriptor based

methods and real-valued descriptor methods. The former indi-

cates the methods that are devoted to fast search with com-

pact representations and the latter indicates the methods that

are devoted to satisfied search performance with real-valued

representations. 

We first compare the UDQ with the compact descriptor based

methods. The comparison results of each method without and

with post-processing strategies are listed for all the datasets in

Table 5 . From the results, we can see that the UDQ significantly

outperforms all the state-of-the-art methods even though they in-

corporate various post-processing strategies. It should be noted

that, for the most datasets, the baseline UDQ achieves an in-

spiring accuracy improvement comparing to these state-of-the-art
ethods. Our best results outperform the second best methods

y 5.0%, 7.2%, 2.8%, 9.1% in terms of mAP on the four datasets,

espectively. 

We further compare the UDQ with the real-valued descrip-

or based methods. The results are shown in Table 6 . The UDQ

chieves a slightly lower performance than the method in [16] and

he main reasons are two aspects. First, it feeds the images to the

etwork at multi-scale, which indeed enlarges the image dataset.

econd, it exploits high-dimensional real-valued features for search

hile the UDQ is based on the compact codes with information

oss. By comparison, our UDQ significantly reduces the time and

emory cost for the object instance search. As a result, it achieves

 better trade-off of the search efficiency and accuracy. Some qual-

tative results of our method are shown in Fig. 5 . 

Note that when adding 100K distractor images, the UDQ re-

ains satisfied performance, which significantly demonstrates the

obustness of our model. The main reasons are as follows. (1) The

eparability constraint and the discriminability constraint enable

he features to be more suitable for the effective supervision infor-

ation generation. (2) The iterative optimization strategy guaran-

ees the features and the supervision information can be enhanced

ach other alternately in a unified model. (3) The refinement strat-

gy further shows the effectiveness of the supervision information

nd leads to a more effective search model. 

In order to better validate the efficiency of our method, we con-

uct experiments on the Oxford5K dataset and the Paris6K dataset

o evaluate the efficiency of the UDQ. We choose Song et al. [7] as

he representative algorithm for hashing methods and Tolias et al.

4] as the representative algorithm for real-valued descriptor based

ethods. All the experiments are performed on a server with an

ntel Core i7-5930 CPU @ 3.50 GHz. The comparison results are

hown in Table 7 . From the table, we can find that UDQ takes the

east search time among methods due to the product quantization.



W. Jiang, Y. Wu and C. Jing et al. / Neurocomputing 362 (2019) 60–71 69 

Oxford105K Paris106K

Oxford5K Paris6K

Fig. 5. Selected results of top-5 ranked images of our method on the Oxford5K, Paris6K, Oxford105K and Paris106K datasets. First image in each row is the query object and 

the other images are the returned images. 

Table 7 

Comparison search time (s) on the Oxford5K dataset and the Paris6K dataset. 

Datasets UDQ Hashing descriptors [7] Real-valued descriptors [4] 

Oxford5K 0.080 0.096 0.169 

Paris6K 0.101 0.118 0. 182 
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s a result, the UDQ model can generate the cost-free codebooks

nd compact codes and further achieve fast search. 

. Conclusion 

In this paper, we have presented an effective Unsupervised

eep Quantization (UDQ) method for object instance search. The

roposed UDQ can generate effective supervision information and

teratively optimize the supervision information in an unsuper-

ised fashion. By the introduction of the two constraints, the

eatures are satisfied with a cluster structure and can generate

ffective supervision information. With the iteration optimization

trategy, the UDQ can realize the alternate optimization of the

eatures and the supervision information in a unified model.

e further proposed three refinement strategies that can obtain

etter supervision information. Our UDQ achieves nearly cost-free

ompact representations and greatly promotes the search effi-

iency on large-scale datasets. Experimental results show that the

DQ outperforms the state-of-the-art methods. 
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