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Heterogeneous Hashing Network for Face Retrieval
Across Image and Video Domains
Chenchen Jing, Zhen Dong, Mingtao Pei , and Yunde Jia, Member, IEEE

Abstract—In this paper, we present a heterogeneous hashing
network to generate effective and compact hash representations of
both face images and face videos for face retrieval across image
and video domains. The network contains an image branch and
a video branch to project face images and videos into a common
space, respectively. Then, the non-linear hash functions are learned
in the common space to obtain the corresponding binary hash
representations. The network is trained with three loss functions:
1) the Fisher loss; 2) the softmax loss; and 3) the triplet ranking
loss. The Fisher loss uses the difference form of within-class and
between-class scatter and is appropriate for the mini-batch-based
optimization method. The Fisher loss together with the softmax loss
is exploited to enhance the discriminative power of the common
space. The triplet ranking loss is enforced on the final binary hash
representations to improve retrieval performance. Experiments
on a large-scale face video dataset and two challenging TV-series
datasets demonstrate the effectiveness of the proposed method.

Index Terms—Face retrieval, image and video domains, deep
CNN, hash learning.

I. INTRODUCTION

FACE retrieval across image and video domains is a method
to retrieve video shots of a person using his/her image

(query-by-image video retrieval) or to retrieve face images using
his/her video clip as a query (query-by-video image retrieval).

The “query-by-image video retrieval” task plays an important
role in rapidly locating and tracking a person from surveillance
video using the photo from an ID card, passport, or driver’s
license as the query. The “query-by-video image retrieval” task
helps to determine the identity of an unknown person by retriev-
ing a huge mug-shot image database and using his/her video shot
taken by surveillance cameras as an input.

The core task of face retrieval across the image and video
domains is to measure the similarity between a face image and
a face video. A straightforward approach is to use the average
or maximum of the similarities between the image and each
frame of the video. Obviously, it neglects valuable information
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Fig. 1. Conceptual illustration of our heterogeneous hashing network. The
input to the network can be either a face image or a face video. The face image
is processed by the image branch, while the face video is processed by the video
branch. Both branches have two modules: one for feature extraction and the
other for mapping features from heterogeneous spaces into a common space. In
the common space, hash functions are learned for the face retrieval task.

regarding the correlations between frames and also suffers from
the problem of high computation and memory costs, particu-
larly when the face video contains hundreds or thousands of
frames. Modeling all the frames of a face video collectively is
more promising, and many compact low-level video features
are proposed, such as Gaussian distribution [1], [2], linear sub-
space descriptor [3]–[5], and SPD matrix descriptor [6]–[8].
However, as a result, the video features and image features lie in
heterogeneous spaces, and this makes face retrieval across the
image and video domains challenging.

In this paper, we propose a heterogeneous hashing network
(HHN) to generate isomorphic binary hash codes of face images
and videos for face retrieval across image and video domains.
Our network contains an image branch and a video branch to
project both face images and videos into a common space, as
shown in Fig. 1.

The two branches project face images and face videos, re-
spectively, from heterogeneous spaces into a common space
to measure similarity. Each branch has two modules: the fea-
ture extractor module and non-linear mapping module. The fea-
ture extractor modules of the two branches aim to represent
face images or videos via appropriate features, such as CNN
features [9]–[11] for images, and C3D features [12] or NAN
features [13] for videos. The non-linear mapping modules are
used to transform the two heterogeneous feature spaces (image
feature space and video feature space) into a common space.
The similarity between a face image and a face video can be
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measured through the distance of their corresponding features in
the common space. These features are high-dimensional vectors
of floating point numbers, which cannot satisfy the requirements
of low computation complexity and storage costs in the retrieval
task. Non-linear hash functions are learned in the common space
to get hash representations of both face images and videos. With
the hash representations, it only takes nearly constant time and
extremely low memory cost to compute similarities for fast
retrieval.

The HHN is trained under joint supervision of the Fisher loss,
the Softmax loss, and the triplet ranking loss. To enhance the
discriminative power of the common space, the Fisher loss and
the Softmax loss are enforced to exploit the common semantic
information of face images and videos. The Fisher loss uses
the difference form of within-class and between-class scatter
and adopts learnable mean vectors. Thus, the Fisher loss is
appropriate for the mini-batch based optimization method.

The enforcement of the two loss functions ensures the dis-
criminative power of features in the common space and improves
the commonalities of these features from the image and video
domains.

The triplet ranking loss is enforced on the hash representations
generated by the non-linear hash functions to further reduce the
gap between the image and video domains. The enforcement
of the triplet ranking loss ensures effective hash representations
for the cross-domain retrieval task.

The proposed method achieves excellent results for face re-
trieval across image and video domains on a large scale face
video dataset and two challenging TV-series datasets. In ad-
dition, the heterogeneous hashing network provides a general
framework for deep learning-based cross-domain hashing meth-
ods and can be easily adopted in many other cross-domain re-
trieval tasks.

The remainder of the paper is organized as follow. Sec. II re-
views the related work including face retrieval methods, single-
modality and multi-modality hashing methods. Sec. III elabo-
rates the heterogeneous hashing network. Sec. IV presents the
experiment results of the proposed method on a large-scale face
video dataset and two TV-series datasets, and Sec. V concludes
this paper.

II. RELATED WORK

A. Face Retrieval

Face image retrieval has been extensively studied [14]–[21].
These works first extract discriminative features of face images
such as GIST features [16], gabor-LBP histogram [14], and
CNN features [20]. Then, hashing-based methods [15], [19]
or sparse coding-based methods [14], [16], [21] are utilized to
obtain compact face representations for retrieval.

Recently, face video retrieval has drawn significant attention
due to the tremendous explosion in video data. Li et al. [22]
proposed a video coding method called compact video code
(CVC) for face video retrieval in TV-Series. In their method,
a face video is represented by its covariance matrix of frames’
DCT features, and the CVC is used to obtain the binary codes
of the face video.

They extended the CVC method by representing face videos
as spatial pyramid covariance matrices for retrieval and signifi-
cantly improved the performance [23]. Dong et al. [24] proposed
an end-to-end deep network to learn discriminative and compact
frame representations and fuse them to obtain final video repre-
sentations for retrieval.

Although enormous methods on face image and video re-
trieval have been proposed and have exhibited excellent perfor-
mance, these methods cannot be directly used in face retrieval
across image and video domains.

Li et. al. [25] proposed a hashing method across the Euclidean
space and the Riemannian manifold to measure the similarity
of face images and videos for face video retrieval with image
query. They achieved performances that were superior to many
traditional single-modality and multi-modality methods.

We propose a heterogeneous hashing network (HHN) to gen-
erate isomorphic binary hash codes of face images and videos
for face retrieval across image and video domains. To the best
of our knowledge, this is the first paper on face retrieval across
image and video domains.

B. Single-Modality Hashing

Hashing methods are widely used in retrieval systems owing
to the increased efficiency in both speed and storage. Exist-
ing hashing methods can be roughly divided into two types:
data-independent hashing and data-dependent hashing. As a
representative of data-independent hashing methods, local-
ity sensitive hashing (LSH) [26] and its variants, kernelized
locality-sensitive hashing (KLSH) [27], use random projections
as hash functions.

Slightly different from LSH, the shift-invariant kernel hashing
(SIKH) [28] uses a shifted cosine function to compute hash
codes. Despite theoretical asymptotic guarantees, LSH, KLSH
and SIKH still require long hash codes to obtain satisfactory
retrieval results.

In contrast, data-dependent hashing methods, namely,
learning-based methods, aim to generate compact similarity pre-
serving hash codes through exploiting the structure or supervi-
sion information of the training data. Most data-dependent meth-
ods fall into three categories: unsupervised, semi-supervised,
and supervised methods. Unsupervised methods learn hash
functions only by using unlabeled training data, and the repre-
sentatives are spectral hashing (SH) [29], iterative quantization
hashing (ITQ) [30], and multilinear hyperplane hashing [31].

Semi-supervised and supervised methods improve hash
code quality by using supervision information, such as semi-
supervised hashing (SSH) [32], supervised iterative quanti-
zation hashing (SITQ) [30], kernel-based supervised hashing
(KSH) [33], and adaptive hashing [34].

Recently, many deep neural network based hashing meth-
ods have been proposed, such as CNN hashing [35], deep se-
mantic ranking-based hashing [36], unsupervised deep learning
compact binary representations [37], deep supervised hashing
(DSH) [38], deep pairwise-supervised hashing [39], and deep
video hashing [40]. Benefiting from the powerful ability of deep
neural networks to describe complex non-linear mappings and
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the end-to-end training manner, these methods achieve good per-
formance on image retrieval tasks. Motivated by these works, we
present the heterogeneous hashing network to learn binary hash
representations of both face images and videos for retrieval.

C. Multi-Modality Hashing

The hashing methods mentioned above achieve great success
in a wide range of applications, but they are not able to re-
trieve data for multiple modalities. Multi-modality hashing has
achieved increased attention in recent years [41]–[43].

Similar to single-modality hashing methods, existing multi-
modality hashing methods can be roughly categorized into two
types: unsupervised and supervised. Representative unsuper-
vised methods include correspondence autoencoder-based hash-
ing (CAH) [44], cross view hashing (CVH) [45], and predictable
dual-view hashing (PDH) [46]. The learning criterions of CAH,
CVH and PDH are reconstruction error minimization, graph-
based similarity preservation, and predictability maintaining, re-
spectively. Typical supervised multi-modality hashing methods
include cross-modal similar sensitive hashing (CMSSH) [47],
multimodal latent binary embedding (MLBE) [48], multi-modal
neural network hashing (MMNN) [49], parametric local multi-
modal hashing (PLMH) [50], hashing with semantic correlation
maximization (SCM) [51], and semantic preserving hashing
(SPH) [42]. Supervised methods are able to fully utilize the se-
mantic information to reduce the discrepancy and the semantic
gap between modalities, and they achieved better performances
than unsupervised methods.

Jiang and Li [41] proposed the deep cross-modal hashing
method and applied it to the cross-modal retrieval between im-
ages and text sentences. Cao et al. [43] proposed the deep visual-
semantic hashing method to deeply explore the heterogeneous
correlation structure information for cross-modal retrieval be-
tween images and text sentences. The networks in the above
two methods are designed for retrieval between images and text
sentences and cannot be directly used for retrieval across im-
age and video domains. Our heterogeneous hashing network
provides a general deep architecture for multi-modality hash-
ing and achieves excellent performance on face retrieval across
image and video domains.

III. HETEROGENEOUS HASHING NETWORK

A. Overview

The Heterogeneous Hashing Network (HHN) can generate
isomorphic binary hash codes for face images and videos to
accomplish face retrieval across image and video domains.

The HHN contains two branches: the image branch and video
branch, to deal with face images and videos, respectively. In each
branch, a feature extractor module is equipped to characterize
and represent the input image or video data, and then the non-
linear mapping module is introduced to project the extracted fea-
tures into the discriminative common space. The two branches
with the feature extractor and non-linear mapping modules
are able to discover the heterogeneous correlation structure
across the image and video domains and reduce the discrepancy

Fig. 2. Dataflow illustration of the heterogeneous hashing network.

between the two domains. By enforcing discriminative con-
straints on the common space, the commonalities of features
from multiple domains can be improved.

Non-linear hash functions are learned in the common space
to obtain hash representations of both face images and videos.

Overall, the HHN has five components: feature extraction
module of the image branch, non-linear mapping module of the
image branch, feature extraction module of the video branch,
non-linear mapping module of the video branch, and the hash
learning module. All the five components are implemented via
neural networks, so the entire HHN actually forms a unified op-
timization framework for face retrieval across image and video
domains. Note that the HHN can be easily extended to hashing
for data in other domains in addition to image and video, such
as audio and text, as long as the suitable feature extraction mod-
ule is designed. Our network provides a general framework for
deep learning-based cross-domain hashing methods and can be
easily adopted in many other cross-domain retrieval tasks.

B. Formulation

We define that the superscript I indicates variables or func-
tions of the face image branch, and V indicates ones of the
face video branches. Fig. 2 depicts the dataflow of the HHN
whose five components are represented as five functions: fea-
ture extractor of image branch χI (·), non-linear mapping of
image branch ηI (·), feature extractor of video branch χV (·),
non-linear mapping of video branch ηV (·), and the hash func-
tions φ(·). The variables in Fig. 2 include the following: X for
the data in original space, F for the extracted features, R for
the representations in the common space, and H for the final
hash codes in the Hamming space. We thus have

RI = ηI (χI (XI )), HI = φ(RI ),

RV = ηV (χV (XV )), HV = φ(RV ). (1)

Let c be the total number of individuals, and the face image
representations in the common space are denoted as RI = [RI

1 ,

RI
2 , ...,R

I
c ] ∈ Rd×nI

, where d is the dimension of the common
space and nI represents the total number of the face image sam-
ples. The face video representations in the common space are
similarly defined as RV = [RV

1 ,RV
2 , ...,RV

c ] ∈ Rd×nV
, where

nV is the total number of face video samples. For the i-th (i =
1, 2, ..., c) category, we use RI

i = [rI
i,1 , r

I
i,2 , ..., r

I
i,nI

i
] ∈ Rd×nI

i

and RV
i = [rV

i,1 , r
V
i,2 , ..., r

V
i,nV

i
] ∈ Rd×nV

i to describe the corre-

sponding face image and video representations, where nI
i and
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nV
i are the number of two types of representations of the current

category, and we thus have
∑c

i=1 nK
i = nK , where K ∈ {I, V }

To enhance the discriminative power of the common space
and simultaneously reduce the discrepancy between face image
and video representations, two types of constraints are enforced
to the representations in the common space, i.e., the softmax
loss and the Fisher loss. To guarantee the separability of the
representations, which means that representations of different
classes should stay apart, the softmax loss is enforced in the
common space as

Lds = −
c∑

i=1

∑

K∈{I ,V }

nK
i∑

j=1

log
eW �

i rK
i , j +bi

∑c
k=1 eW �

k rK
i , j +bk

. (2)

The Fisher loss, which minimizes the intra-class variations
and simultaneously maximizes the inter-class variations, is fur-
ther utilized to efficiently enhance the discriminative power of
the common space.

The standard Fisher loss is implemented by minimizing the
Rayleigh quotient of representations of both face images and
videos as tr(SW )/tr(SB ), where tr(·) represents the trace of
the square matrix inside. SW and SB represent the within-
class and between-class scatter matrices, respectively, and are
given by

SW =
C∑

i=1

∑

K∈{I ,V }

nK
i∑

j=1

(rK
i,j − μi)(rK

i,j − μi)�,

SB =
C∑

i=1

ni(μi − μ)(μi − μ)�, (3)

where μi and μ are the mean vector of the i-th individual and
all samples:

μi =
1
ni

∑

K∈{I ,V }

nK
i∑

j=1

rK
i,j , μ =

1
n

C∑

i=1

niμi , (4)

where ni = nI
i + nV

i and n = nI + nV =
∑c

i=1 ni represent
the sample number of the i-th individual and all individuals,
respectively. Since SW and SB are computed by using face
data over both the image domain and the video domain, the
utilization of the Fisher loss reduces the discrepancy between
the two domains and simultaneously takes the discriminative
power of representations into account.

To effectively minimize the Rayleigh quotient, both SW and
SB should be non-singular matrices. Thus, the dimension of the
representations must be smaller than the number of categories.
This requirement cannot be satisfied in many real applications
in which representations for hash learning usually have high
dimensions. In addition, since the mean vectors are computed
over the whole training set, the Fisher loss in the Rayleigh
quotient form cannot be optimized by the mini-batch based
optimization method, such as the stochastic gradient descend
method, which is widely used in training deep neural networks.

We introduce the difference form of Fisher loss as tr(SW )−
tr(SB ) + λ‖R‖F to overcome the problems mentioned above,
where ‖R‖F is added to ensure the convexity of the objective

function [52], ‖ · ‖F is the Frobenius norm of the inside matrix,
and λ is a trade-off hyper-parameter. Furthermore, we keep the
mean vectors learnable for the feasibility of the mini-batch op-
timization methods. In the training process, we simultaneously
update the mean vectors, minimize the distances between the
features and their corresponding class mean vectors, and maxi-
mize the distances between each class mean vector and the mean
vector of all the features.

Intuitively, the Fisher loss simultaneously pulls the features
of the same class to their mean vectors and pushes the mean
vectors of each class away from the mean vector of all features.
The Fisher loss is thus equally formulated as

Ldf = λ‖R‖2F

+
1
2n

c∑

i=1

∑

K∈
{I ,V }

nK
i∑

j=1

‖rK
i,j − μi‖22 −

1
2n

c∑

i=1

ni‖μi − μ‖22 .

(5)

In the common space, non-linear hash functions are learned.
To obtain isomorphic hash representations for retrieval, we en-
courage the hash functions to hold a large margin between the
distances of positive and negative pairs of hash representations.
To this end, the triplet ranking loss is exploited in the Hamming
space. The triplet ranking loss indicates that the relative similar-
ities of the hash representations in a form such as “face h is more
similar to h̃ than ĥ”, where h, h̃, and ĥ are the anchor point,
the positive sample and the negative sample, respectively. Let h

and h̃ be samples from the same individual, while ĥ belongs to
a different individual, (h, h̃) forms a positive sample pair and
(h, ĥ) is the negative sample pair. Thus, the loss of one triplet
is formulated as

t(h, h̃, ĥ) = max
(
d
(
h, h̃

)− d
(
h, ĥ

)
+ ζ, 0

)
, (6)

where d(θ1 ,θ2) = (l − θ�1 θ2)/2 is the Hamming distance in
the binary space, l is the bit number of hash codes, and ζ ≥
0 represents the margin of the distance differences between
positive and negative pairs.

Aiming to eliminate the discrepancy between the two do-
mains and ensure good optimization, it is crucial to generate
effective triplets for triplet ranking loss because many triplets
whose samples belong to the same domain are invalid for the
cross-domain retrieval task. In addition, many triplets’ losses are
approximately zero, which would result in slower convergence.
Thus, we simplify the problem of generating triplets down to
the problem of selecting the negative sample ĥ for the positive
sample pair (h, h̃) from the whole batch. For each positive sam-
ple pair, we set h and h̃ to belong to the same individual but
different domains to generate triplets that are beneficial to our
task.

Specifically, we organize the training set in the form of posi-
tive sample pairs to let a batch with L samples have L/2 positive
sample pairs. Each positive sample pair contains a face image
and a face video. For a positive sample pair (h, h̃), we select
negative samples only from the left L− 2 samples of the batch.
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Two conditions must be met so that the negative sample ĥ: ĥ

belongs to a different individual from h and h̃, and the triplet
(h, h̃, ĥ) has positive loss, i.e. d(h, h̃)− d(h, ĥ) + ζ > 0. Let
N be the negative sample set for pair (h, h̃); we select M neg-
ative samples from N in two ways: hard negative selecting and
random negative selecting.

� Hard Negative Selecting: Hard negative samples mean that
they are much closer to h than other negative samples. Let
Q be the set of hard negative samples; we have

max
q∈Q

d(h, q) < min
q∈N−Q

d(h, q). (7)

We enforce that |Q| = M1 .
� Random Negative Selecting: As for other M2 negative sam-

ples where M2 = N −M1 , we randomly select them from
N − S.

The percentage of hard negative samples, η = M1/M , is set
as 0.5 in our experiments. For each positive sample pair, We
first set the face image as the anchor point and the face video
as the positive points and select M negative samples from the
batch to form M triplets, which forms the T1 . Then, we set the
face video as the anchor points and M triplets is generated in
the same way and formed T2 .

Note that we shuffle the training set at the beginning of each
epoch to generate as many appropriate triplets as possible.

By adding the domain constraint to the positive sample pair
and exploiting the hard negative selecting and random negative
selecting strategy, effective triplets are obtained, and the triplet
ranking loss is finally given by

Lt =
∑

(hI
1 ,hV

2 )∈P

⎛

⎝
∑

h3 ∈T1

t(hI
1 ,hV

2 ,h3)

+
∑

h3 ∈T2

t(hV
2 ,hI

1 ,h3)

⎞

⎠ (8)

where P is the set of positive sample pairs in a mini-batch.
Considering the discriminative constraint of the common

space and the triplet ranking loss of the binary space simul-
taneously, our HHN is formulated as

min
Γ,Θ ,Λ

L = αLds + βLdf + Lt , (9)

where Γ = {χI (·), ηI (·), χV (·), ηV (·), φ(·)} represent all the
parameters in the HHN, Θ = {W i , bi |i = 1, 2, ..., c} is the pa-
rameter of the softmax loss Lds , Λ = {μi |i = 1, 2, ..., c} is
the parameter of the Fisher loss Ldf , and α and β are hyper-
parameters to balance the importance between terms.

C. Optimization

We use the classical back-propagation method to train the
HHN modeled by Eq.(9), and the back-propagation is imple-
mented via the stochastic gradient descend optimization method.
The gradients of the losses Lds , Ldf and Lt are necessary for
the optimization. TheLds is the well-known softmax loss whose
gradients w.r.t. Θ and R can be easily calculated.

The gradients of Ldf w.r.t. μi and rK
i,j (K ∈ {I, V }) are

given by

∂Ldf

∂μi
=

1
n

∑

K∈{I ,V }

nK
i∑

j=1

(μi − rK
i,j )−

ni

n
(μi − μ),

∂Ldf

∂rK
i,j

=
1
n

(rK
i,j − μi) + 2rK

i,j . (10)

For triplet ranking loss in Eq. (8), we list the gradients of
Eq.(6) w.r.t. (h, h̃, ĥ) as

∂t

∂h
=

1
2
(ĥ− h̃)× 1

(
Λ

)
,

∂t

∂h̃
= −1

2
h× 1

(
Λ

)
,

∂t

∂ĥ
=

1
2
h× 1

(
Λ

)
,

Λ � d(h, h̃)− d(h, ĥ) + ζ > 0, (11)

where 1(·) is the indicator function that returns 1 if the condition
inside is true and 0 for other occasions.

Since the Lds and Ldf are enforced on the representations
in the common space and the Lt is conducted on the hash
representations as depicted in Fig. 2, we organize the optimiza-
tion method in two procedures: pre-training and fine-tuning. In
the pre-training procedure, we optimize the image and video
branches except for the hash functions to obtain good initial-
izations for network optimization. The pre-training procedure
provides effective feature extractors and non-linear mappings
that project face images and videos from heterogeneous spaces
to vectors in a common space. Since only χI (·), ηI (·), χV (·)
and ηV (·) are learned while keeping the hash functions φ(·)
fixed during the optimization in this procedure, only Lds and
Ldf are used. Benefiting from the softmax and Fisher losses, the
generated representations of both face images and videos are in-
dividual separable and discriminative, which thus significantly
reduces the discrepancy between domains. The fine-tuning pro-
cedure optimizes the entire network with the initializations ob-
tained in the pre-training procedure. This procedure aims to
integrate the image branch, the video branch, and the hash func-
tions into a unified optimization framework so that all the com-
ponents interact with each other for the final retrieval task. The
robustness of image and video branches influence the hashing
performance, and the hashing performance inversely guides the
learning of the two branches.

Overall, the optimization of the HHN is summarized in
Algorithm 1, where Φ={χI (·), ηI (·), χV (·), ηV (·)} represe-
nts the parameters of the image and video branches and Γ = Φ
∪ {φ(·)} represents the parameters of the whole network.

D. Implementation Details

In our implementation, the inputs of the HHN are face images
and kernel matrices representing face videos. For a face video,
we execute PCA on its frames to get 100-dim vectors and then
calculate a 100× 100 RBF kernel matrix K by using the method
in [8]. In our network, the image branch consists of stacked fully
connected layers and ReLU activation layers, and the size of the
image branch is “h× w − 100− 512− 1024− 100”, where h
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Algorithm 1: Heterogeneous Hashing Network Training
Algorithm

Input: Face Images XI , Face Videos XV , their
corresponding labels, and hyper-parameters α
and β.

Output: HHN Weights Γ.
1: 1. Pre-Training
2: t← 0;
3: Randomly initialize Ψt = Φt ∪Θt ∪Λt ;
4: repeat
5: Forward: Calculate the joint losses of softmax

and Fisher L = αLds + βLdf ;
6: Backward: Calculate gradients to the input layer

by layer, and gradients to weights ∂L/∂Ψt ;
7: Update: Ψt = Ψt+1 − γt(∂L/∂Ψt);
8: t← t + 1;

9: until Convergence;
10: 2. Fine-Tuning
11: s← 0;
12: Initialize Ψ with the pre-trained results and initialize

the hash functions φ(·) randomly: Ωs =Ψt∪{φs(·)};
13: repeat
14: Forward: Calculate the losses L = Lt ;
15: Backward: Calculate gradients to the input layer

by layer, and gradients to weights ∂L/∂Ωs ;
16: Update: Ωs+1 = Ωs − γs(∂L/∂Ωs);
17: s← s + 1;

18: until Convergence;
19: Return Γ.

and w represent the height and width of the face images and
the other numbers represent the neuron number of the fully
connected layers. In the video branch, a vectorization operation
layer is inserted and followed by the stacked fully connected lay-
ers and ReLU activation layers, and the size of the video branch
is “100× 100− 5050− 100− 512− 1024− 100”. According
to [53], the vectorization operation layer vectorizes the kernel
matrix in the form of

vec(K) = [V 1,1 ,
√

2V 1,2 , ...,
√

2V 1,p ,V 2,2 ,
√

2V 2,3 ,

...,
√

2V 2,p , ...,
√

2V p−1,p ,V p,p ]�,
(12)

to produce a p(p + 1)/2-dim vector, where p = 100, and V =
log(K) is the matrix logarithm of K. In each branch, the fea-
ture extractor module is exploited to represent the input im-
age or video as a 100-dim vector, and the following non-linear
mapping module projects features in heterogeneous spaces into
the common space. The hashing functions are implemented by
a “100− 100− l” network with two fully connected layers,
where l is the bit number of the hash codes.

After the last fully connected layer of the hashing functions,
a tanh layer is inserted to approximate the sgn(·) function
for the quantization of the hash codes. Furthermore, the hyper-
parameters, α, β and λ, are set as 1, 0.1 and 0.001, respectively.

Both of the pre-training and fine-tuning procedures are im-
plemented by using the open source Caffe tool [54]. The

pre-training procedure is optimized via the stochastic gradient
descent method, where the momentum and the weight decay are
set as 0.9 and 5× 10−4 , respectively. The learning rate of the
optimization is initialized as 0.01 and decreased according to
the polynomial policy with a power value of 0.8. The size of the
mini-batch of the training samples is set as 512, and the total
number of the iterations is 100 K. The time cost of each iteration
of the pre-training procedure is about 27 ms using an NVIDIA
Titan X GPU. The total training time of the pre-training pro-
cedure is about 50 min. The memory cost of the pre-training
procedure is about 350 MB.

Similarly, the momentum and the weight decay of the fine-
tuning procedure are 0.8 and 5× 10−5 , respectively. The learn-
ing rate of the optimization is initialized as 0.001 and decreased
according to the polynomial policy with a power value of 0.8.
The size of the mini-batch of the training samples is set as 512,
and the total number of the iterations is 50 K. The time cost of
each iteration and the total training time of the fine-tuning pro-
cedure are about 25 ms and 30 min, respectively. The memory
cost of the fine-tuning procedure is about 350 MB.

IV. EXPERIMENTS

A. Datasets and Experimental Setting

To evaluate the performance of the proposed method, we
conduct experiments on two datasets: ICT-TV and Celebrity-
1000. The ICT-TV dataset [55] has two large-scale face video
shot collections from the first seasons of two popular American
shows: the Big Bang Theory (BBT) and Prison Break (PB).
The filming styles of the two TV-series are quite different. The
BBT is an indoor melodrama with only 5 main characters, and
each episode lasts about 20 minutes. In contrast, the PB mostly
takes place outside, and the average length of all the episodes is
around 42 minutes, which leads to large illumination variations.
The total number of face video shots of the two collections are
4,667 and 9,435, respectively.

Different from ICT-TV, Celebrity-1000 (Celeb1K) [56] is a
large-scale face video dataset. It contains 159,726 video se-
quences of 1,000 human subjects, with 2.4M frames in total
(about 15 frames per sequence). The face frames of videos in
the dataset have been preprocessed by detection, alignment, and
resized to 64× 48.

Since the two datasets are not specially proposed for the
cross-domain face retrieval task and only contain face videos,
we use two approaches to form the image sets. A common
method, which has been adopted by recent work on video re-
trieval with image query task [25], [57], [58], is to select frames
from the videos as the image set. Compared with frames se-
lected from videos, images from the Internet contain more vari-
ations and are thus more challenging [59]. To fully evaluate the
performance of the proposed method, we conduct experiments
under both settings, according to the two sources of the im-
ages, i.e., images selected from the videos and images from the
Internet.

On all of the BBT, the PB and the Celeb1K datasets, subsets
are selected as the training sets. Specifically, all the individuals
in the datasets are first sorted according to the number of videos
per individual from large to small, and the top 5 of the BBT,
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TABLE I
COMPARISON MAPS OF QUERY-BY-IMAGE VIDEO RETRIEVAL ON THE TWO DATASETS USING SELECTED FRAMES

TABLE II
COMPARISON MAPS OF QUERY-BY-VIDEO IMAGE RETRIEVAL ON THE TWO DATASETS USING SELECTED FRAMES

the top 7 of the PB (except for the “Unknown” category), and
top 15 of Cele1K are then selected. Each selected individual
randomly provides 200 videos to form the training video set.
On the first setting, one frame is randomly selected from each
video to form the set of training images. And the size of the
training sets are thus as follows: 1000 images and 1000 videos
for BBT, 1400 images and 1400 videos for PB, and 3000 images
and 3000 videos for Cele1K. The remaining videos are used
as the testing video set, and the testing image set also comprises
randomly selected frames from the videos, like the training
image set. On the second setting, we first crawled images from
typical image search engines, i.e., Google, Baidu, and Bing, for
selected individuals of the BBT and the PB. We did not extend
the Celebrity-1000 dataset since the name list of this dataset is
unavailable. Then, the face detector [60] is utilized to exclude
the images that contain no faces. We further manually sifted
the crawled images to ensure that the face images belong to the
corresponding individual. The average number of images per
individual in the BBT and the PB is about 400. For each dataset,
we randomly select 200 images for each individual to form the
set of training images.

The remaining images and the remaining videos formed the
testing set. For both settings, 10 face images or video shots
are randomly selected to form the query set, and the database
consists of the remaining face images or video shots in the
testing phase.

To fully evaluate the performance of our approach, we com-
pared it with eight single-modality and six multi-modality hash-
ing methods.

1) Single-modality hashing methods: LSH [26], SH [29],
ITQ [30], SITQ [30], RR [30], SSH [32], KSH [33] and
DSH[38];

2) Multi-modality hashing methods: CCA [30], PDH [46],
CMSSH [47], MMNN [49], SCM [51], HER [25].

The bit number of the hash codes ranges from 8 to 64 to show
the performances of all these methods versus code lengths. The
parameters of the comparison methods are carefully set based on
the suggestions in their original publications for fair comparison.

Four evaluation criterion are used: Precision Recall curve (PR
curve), Precision curve w.r.t. Number of top returned samples
(PN curve), Recall curve w.r.t. Number of top returned samples
(RN curve) and mean Average Precision (mAP). The reported
results including mAPs and curves are the averages of 30 rounds
of tests. Only the PR, PN and RN curves under the first setting
with a hash code length of 64 are presented as representative
results in the interest of space.

B. Results on Selected Frames

This part of the experiments is divided into two parts, corre-
sponding to the two types of cross-domain retrieval tasks (i.e.,
query-by-image video retrieval and query-by-video image re-
trieval). For query-by-image video retrieval, the query set con-
tains 10 face images of each person, and the database consists
of the remaining video shots. To the contrary, for query-by-
video image retrieval, the query set contains 10 video shots of
each person, and the database consists of the remaining face
images. Table I and Table II list the mAPs of all the methods
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Fig. 3. Comparisons of PR, PN, and RN curves of query-by-image video retrieval on the ICT-TV and Celeb1K datasets using selected frames.

of the query-by-image video retrieval and query-by-video im-
age retrieval, respectively. And Fig. 3 and Fig. 4 depict the
corresponding comparisons of the PR, PN, and RN curves. For
fair comparison, the inputs of the other methods are the fea-
tures extracted by the feature extractor modules of our HHN.
To use single-modality hashing methods for cross-domain face
retrieval, the face video is regarded as a set of face frames, and
the distance between a face image and a face video is computed
by averaging the distances between the image and all the frames
of the video. For multi-modality hashing methods, we first vec-
torize the kernel matrix in the form of Eq. (12) and then conduct
hashing methods on the image feature vectors and vectorized
kernel matrix since these multi-modality hashing methods ex-
cept HER can only deal with the situation where modalities are
represented in Euclidean space.

From the tables and figures, we find that the multi-modality
hashing methods outperform single-modality hashing methods

in general, and this is partially because the multi-modality meth-
ods use the kernel matrix video representation, which makes
full use of correlation information between frames to charac-
terize the complex variations in face videos. Benefiting from
the powerful ability for describing complex non-linear map-
pings, deep hashing methods (DSH [38] and MMNN [49])
and kernel-based hashing methods (KSH [33] and HER [25])
outperform the others markedly. Supervised hashing meth-
ods achieve better performance than unsupervised methods in
most cases whether in the single-modality or multi-modality
hashing method; supervised methods take full advantage of
the label information during hash function learning. In ad-
dition, since the videos of the Celebrity-1000 are relatively
low quality and exhibit huge diversity in lighting and back-
ground, the Celebrity-1000 is more challenging than the ICT-
TV dataset. As a result, all the methods perform worse in the
Celebrity-1000.
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Fig. 4. Comparisons of PR, PN, and RN curves of query-by-video image retrieval on the ICT-TV and Celeb1K datasets using selected frames.

Table I and Fig. 3 show that our HHN outperforms all the
other hashing methods significantly in most cases. This is true
for the following reasons: (1) Both the inter-domain and intra-
domain discriminativity are considered to optimize the network;
(2) Both of the representations in the common space and the final
hash codes are enforced to be discriminative with three losses;
(3) The two-stage optimization method first projects data from
heterogeneous spaces into a common space and then concen-
trates on learning hash functions in the discriminative space; (4)
The network does not enforce any prior assumption on the data
and the mapping from original spaces to the binary space so that
the optimal network only depends on the data, while the kernel
functions in the HER method might not be suitable all the time.

C. Results on Internet Images

Experiments on Internet images are also divided into query-
by-image video retrieval and query-by-video image retrieval.

Table IV and Table V list the mAPs of all the methods of
the query-by-image video retrieval and query-by-video image
retrieval, respectively. Since single-modality hashing methods
cannot simultaneously handle both the frames in the videos and
the images crawled from the Internet, only the multi-modality
methods are compared with our method. For fair comparison,
the inputs of the multi-modality methods are the features ex-
tracted by the feature extractor modules of our HHN.

From the tables, we find that since the crawled images contain
more variations, the performances of all the methods decreased
compared with the results in Sec. IV-B. However, thanks to
the two-branch network architecture, the two-stage optimiza-
tion strategy, and the joint supervision of the three losses, our
HHN outperforms all the other multi-modality hashing methods
significantly.

Figure 5 shows a real retrieval case on the PB dataset with
64-bit binary codes. It is clearly shown in the figure that the
videos in the PB dataset has large variations in pose, background,
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TABLE III
COMPARISON MAPS OF OUR METHODS OF QUERY-BY-IMAGE VIDEO RETRIEVAL ON THE TWO DATASETS USING SELECTED FRAMES

TABLE IV
COMPARISON MAPS OF QUERY-BY-IMAGE VIDEO RETRIEVAL ON THE TWO DATASETS USING INTERNET IMAGES

TABLE V
COMPARISON MAPS OF QUERY-BY-VIDEO IMAGE RETRIEVAL ON THE TWO DATASETS USING INTERNET IMAGES

Fig. 5. Real retrieval cases on the PB dataset with 64-bit binary codes. (a) Shows a query-by-image video retrieval case where the query is an image of Sara
Tancredi. (b)Shows a query-by-video image retrieval case where the query is a video of Michael Scofield. Only the top-10 feedbacks of each method are shown.
Red rectangles highlight the errors.

expression and illumination, while the images crawled from the
Internet have different styles and resolutions in addition to the
aforementioned variations.

D. Ablation Studies

To verify the effectiveness of the three losses, we respectively
exclude the Fisher loss and the triplet ranking loss of our pro-
posed method and get two incomplete networks, namely, HHN
(S-T) and HHN (S-F), where “S”, “F” and “T” represent the
softmax loss, Fisher loss and triplet ranking loss, respectively.
For the first network, only the softmax loss is enforced in the

common space. For the second network, the fine-tuning proce-
dure is excluded, and the hash codes are obtained via random
projections applied to the floating point features in the common
space. We compare the performance of these networks and the
whole proposed network in the query-by-image video retrieval
task using the selected frames, and the mAPs are shown in
Table III. The results show that the separability of the com-
mon space, which is guaranteed by the softmax loss, serves as a
foundation of good performance. The Fisher loss, which takes
the intra-class variations and the inter-class variations into ac-
count, enhances the discriminative power of the common space
and results in better retrieval performance. Finally, the triplet
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Fig. 6. mAPs of query-by-image video retrieval on the Celebrity-1000 dataset
achieved by (a) networks with different β and fixed λ and (b) networks with
different λ and fixed β = 0.01.

ranking loss is critical to generate compact and effective hash
representations for retrieval. In the fine-tuning procedure, the
optimization of the whole network is beneficial to the optimal
compatibility, namely, optimal hash representations.

Furthermore, to verify the effectiveness of sampling methods
among the two domains in triplet ranking loss, we relax the
requirement that the samples in a positive sample pair must
belong to different domains. Specifically, we randomly select
samples from the same individual’s images and videos to get the
positive sample pairs and then use the same methods to generate
triplets. Finally, we obtain a network named HHN (S-F-T(r)).
The mAPs of the HHN (S-F-T(r)) are also shown in Table III.
It can be found that HHN (S-F-T(r)) performs worse than HHN
(S-F-T) in all cases and even performs worse than HHN (S-F)
occasionally; in the optimization process of HHN (S-F-T(r)),
many generated triplets are useless to the cross-domain retrieval
task. This demonstrates that our sampling methods are effective
and are beneficial to further reduce the discrepancy between the
face image and video domains.

E. Parameter Analysis

In our method, α, β and λ are three critical hyper-parameters.
α and β in Eq.(9) serve the weight of the softmax loss, the Fisher
loss, and the triplet ranking loss, while λ balances the convexity
term and the other two terms in the Fisher loss. Since the three
losses are utilized in different training stages, and in the pre-
training procedure only the softmax loss and the Fisher loss is
utilized, we set α as 1 all the time and conduct two experiments
on the Celebrity-1000 dataset using the selected frames to verify
the sensitiveness of β and λ. In the experiments, we perform the
pre-training procedure and obtain the hash codes via random
projections applied to the floating point features in the common
space.

In the first experiment, we fix λ to 0.01 and vary β from 0
to 1 to train different networks. The mAPs of query-by-image
video retrieval are shown in the Fig. 6(a). It can be found that
without the Fisher loss, the network cannot achieve satisfactory
performance. The performance of our networks remains rela-
tively stable across a range of β. In the second experiment, we
fix β and vary λ from 0 to 1 to train different networks. The
mAPs are shown in Fig. 6(b). We observe that when the λ is set
as a large number i.e., 0.1 or 1, the mAPs will be significantly
reduced. When λ is set as a smaller number, the mAPs of our
networks remain relatively stable.

TABLE VI
THE ENCODING TIME FOR DIFFERENT ALGORITHMS WHEN THE LENGTH OF

THE HASH CODES IS 64

F. Efficiency Study

In this subsection, we analyze the efficiency of our HHN in
fully evaluating the effectiveness of the HHN for cross-domain
face retrieval. The time cost for cross-domain face retrieval
consists of two parts, the encoding time and the retrieval time.
The encoding time refers to the time to generate the query hash
code for the query face image or video using the trained model,
while the retrieval time is the time to get the feedback samples
from the database using the generated query hash code. In what
follows, we analyze the encoding time and the retrieval time
of the proposed HHN. All the experiments are performed on
a server with an Intel Core i7-4930K CPU and an NVIDIA
Titan X GPU. The DSH [38] and our HHN are implemented
using the Caffe tool. Other methods and the retrieval process
are implemented using the Matlab. All the reported time costs
are the averages of 10 round of tests.

We compare the encoding time cost for image or video of the
HHN with the state-of-the-art when the length of the hash codes
is 64; the results are listed in Table VI. It should be noted that in
our experiments above, to use single-modality hashing methods
for cross-domain face retrieval, the face video is regarded as a set
of face frames, and the distance between a face image and a face
video is computed by averaging the distances between the image
and all the frames of the video. We exploit this setting to evaluate
the performance of the single-modality hashing methods, and
this setting is acceptable since the biggest dataset we utilized in
our experiments contains no more than 10000 videos or images.
However, this setting is not practical in large-scale cross-domain
face retrieval. Thus, we exploit the hard-voting method to obtain
the hash codes for videos when computing the video encoding
time cost of single-modality hashing methods. For the ICT-
TV dataset, the average number of frames for all the videos in
the selected subset is about 45, while the average number of
frames for the Celeb1K dataset is about 16. Thus, for single-
modality hashing methods, we provide the video encoding times
for the two datasets in Table VI. Since matrix multiplication is
more efficient than loop, it is shown in Table VI that the image
encoding time cost and the video encoding time cost for the two
datasets are not linearly related. From the table, we find that
most traditional hashing methods are faster than deep hashing
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methods (HHN, DSH [38] and MMNN [49]) and kernel-based
hashing methods (KSH [33] and HER [25]). In addition, the
PDH [46], which utilizes the SVM to predict the value of each
hash bit, and the SH [29], which compute the hash codes bit
by bit rather than using an overall projection matrix, are much
slower than other traditional hashing methods.

For all the hashing methods, we use the hash code ranking as
the search strategy to compare the query with each sample in
the database by rapidly computing their distance and return the
samples in ascending order according to distance. Thus, for a
database that contains N samples and has hash codes of length
L, the space cost of the database is N ∗ L bits and the time
complexity of the retrieval process is O(N ∗ L + N ∗ log(N)),
in which the first term is for computing distance and the second
term is for sorting distances when the QuickSort algorithm is
utilized, which is the default sorting algorithm in Matlab. In
particular, when L is 64 and N is 1,000,000, the space cost
of the database is 8 MB. The encoding time of our HHN is
0.279 ms for an image and 0.344 ms for a video. The time cost
of computing the distances and sorting the distances is 29.839 ms
and 79.558 ms, respectively. It should be noted that the distance
computing process also benefits from matrix multiplication.

From the above analysis, we find that although our HHN is
more time consuming than most traditional hashing methods in
generating the query hash code, in the face retrieval process, the
retrieval time cost is almost two orders of magnitude larger than
the encoding time cost. And the gap between them will be even
larger in practical applications in which the database contains
billions of samples. As a result, the HHN is still scalable since
the time cost of retrieval is almost as fast as traditional hashing
methods while outperforming other methods.

V. CONCLUSION

In this paper, we have proposed a heterogeneous network for
face retrieval across image and video domains. The heteroge-
neous hashing network containing an image branch and a video
branch is able to generate isomorphic compact hash representa-
tions of both face images and face videos from heterogeneous
spaces. The network is trained with Fisher loss, softmax loss,
and triplet ranking loss. The Fisher loss, which uses the dif-
ference form of the within-class and the between-class scatter,
is feasible for the mini-batch based optimization method. The
heterogeneous hashing network provides a general framework
for deep learning-based cross-domain hashing methods and can
be easily adopted in many other cross-domain retrieval tasks.
Experiments on a large-scale face video dataset and two chal-
lenging TV-series datasets show that the proposed method is
effective in face retrieval across image and video domains.
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