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Abstract. Moment bias is a critical issue in temporal video grounding
(TVG), where models often exploit superficial correlations between lan-
guage queries and moment locations as shortcuts to predict temporal
boundaries. In this paper, we propose a model-agnostic counterfactual
samples synthesizing method to overcome moment biases by endowing
TVG models with sensitivity to linguistic and visual variations. The mod-
els with sensitivity sufficiently utilize linguistic information and focus
on important video clips rather than fixed patterns, therefore are not
dominated by moment biases. Specifically, we synthesize counterfactual
samples by masking important words in queries or deleting important
frames in videos for training TVG models. During training, we penalize
the model if it makes similar predictions on counterfactual samples and
original samples to encourage the model to perceive linguistic and visual
variations. Experiment results on two datasets (i.e., Charades-CD and
ActivityNet-CD) demonstrate the effectiveness of our method.

Keywords: Moment biases · Counterfactual samples · Temporal video
grounding

1 Introduction

Temporal video grounding (TVG) is to locate the moment that best matches a
language query in an untrimmed video. Given a query “person they start to take
some medicine with a spoon” and a corresponding video, models are required to
locate a temporal boundary in the video that best matches the query as shown
in the original sample of Fig. 1. Recent work [11,14,20] reveals that most TVG
models rely on superficial correlations (i.e., moment biases) between language
queries and moment locations to infer the temporal boundary. A TVG model that
is dominated by moment biases usually utilizes fixed patterns to infer temporal
boundaries and is insensitive to linguistic and visual variations. We consider that
making TVG models sensitive to linguistic and visual variations can alleviate the
influences of moment biases on the models.
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Fig. 1. We synthesize counterfactual samples to train TVG models for endowing them
with two sensitivities. (a) Query sensitivity: the model should be sensitive to linguistic
variations (e.g., after replacing the important word “opens” with “closes”, the predicted
boundaries of two queries should be different). (b) Visual sensitivity: the model should
be sensitive to the visual content variations.

In this paper, we propose a model-agnostic method to synthesize counterfac-
tual samples by masking important words or deleting important frames, for alle-
viating moment biases in TVG. Our method serves as a plug-and-play component
to endow various types of the TVG model with sensitivity, including proposal-
based methods or proposal-free methods. The important words/frames refer to
the word/frame that has high contributions to infer boundaries. As shown in
Fig. 1, our method consists of two different types of sample synthesizing strate-
gies. For each original training sample, we synthesize a query counterfactual
sample and a visual counterfactual sample, both of which consist of a counter-
factual Query-Video (QV) pair and corresponding boundaries. By training with
synthesized samples, TVG models are encouraged to perceive boundary changes
caused by masking words or deleting frames, thus being sensitive to linguistic
and visual variations. However, assigning new boundaries to counterfactual QV
pairs is non-trivial, because the moment matching the language query of the
counterfactual QV pair may not exist. To this end, we introduce a difference
maximization (DM) loss to maximize the differences between the model’s pre-
dicted boundaries for counterfactual QV pairs and the ground-truth boundaries
of original samples, which avoid assigning pseudo boundaries for counterfactual
QV pairs. The idea behind the DM loss is to provide the counterfactual sample
with the boundary difference from the original sample. Extensive experiments
on the Charades-CD and ActivityNet-CD datasets demonstrate the effectiveness
of our method.

The main contribution of this paper can be summarized as follows: (1) We
propose a model-agnostic method, which synthesizes counterfactual samples to
make TVG models sensitive to language queries and video moments for over-
coming moment biases. (2) We introduce a difference maximization loss that
maximizes the differences between the predicted boundaries for counterfactual
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QV pairs and the ground-truth boundaries of original samples, to avoid assigning
pseudo boundaries for counterfactual QV pairs.

2 Related Work

2.1 Temporal Video Grounding

Given an untrimmed video and a language query, temporal video grounding
aims to locate the start and end time of the video segment that best matches
the given query. Existing supervised methods can be mainly categorized into
two groups: (1) Proposal-based methods [1,5,8,10] localize the target seg-
ment via generating video segment proposals. They use a boundary predictor to
compute a score for each proposal. Ideally, a proposal gets a higher score if it is
closer to the ground-truth moment. Then the proposal with the highest score is
selected as the boundary. Candidate proposals are obtained by using temporal
sliding windows or an anchor-based strategy. If the proposals are generated by
an anchor-based strategy, the score is computed based on the multi-modal snip-
pet feature sequence by applying multi-scale anchors in the boundary predictor.
(2) Proposal-free methods [2,3,6,9] do not generate proposals. They use a
regressor or a span predictor as a boundary predictor. Specifically, the regression-
based predictor aims to regress the start and end timestamps after interacting
the whole video with the query without pre-defining proposals. Existing models
achieve promising performance, but they may suffer from moment biases. In con-
trast, we propose a model-agnostic counterfactual sample synthesizing method
to alleviate the influences of moment biases on TVG models.

2.2 Moment Biases

Due to the uneven distribution of the dataset, the model relies on the superficial
correlation (i.e., moment biases) between query and moment annotations when
making predictions. Recent work tries to overcome the influence of moment
biases. Yuan et al. [11] first propose that the TVG model usually captures
moment biases, and it is difficult to accurately evaluate the level of the model
with existing datasets and metrics, so they propose new metrics and benchmarks
to accurately evaluate the model. Zhang et al. [13] exploit a video-only branch
and a query-only branch to capture the distributional bias of video and query,
respectively, forcing the model to learn cross-modal interaction information. Liu
et al. [12] first align the given video-query pair by a cross-modal graph convo-
lutional network, and then utilize a memory module to record the cross-modal
shared semantic features in the domain-specific persistent memory. Yang et al.
[14] disentangle moment representations with location factors to infer crucial
features of visual content and then apply to intervene causally on the disen-
tangled multi-modal inputs based on back-door adjustment, which forces the
model to fairly incorporate each possible location of the target into consider-
ation. These methods focus on creating delicate models to directly reduce the
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influence of moment biases. Differently, we synthesize counterfactual samples to
endow TVG models with sensitivity to linguistic and visual variations without
changing the network structure for overcoming moment biases.

2.3 Counterfactual Sample Synthesis

In vision-and-language, there are some counterfactual sample synthesis methods
for improving the robustness of models. Zhang et al. [23] propose counterfactual
contrastive learning paradigm to build contrastive training between positive and
negative samples in weakly-supervised temporal video grounding and obtain neg-
ative samples by perturbing the feature of the feature layer, interaction layer,
and relation layer. Hirota et al. [24] investigate the effectiveness of text repre-
sentations for image understanding in VQA. In particular, they delves into the
use of synthesized samples on language-only representations including counter-
factual samples. Chen et al. [25] train the VQA model using a counterfactual
sample synthesis training scheme to reduce language biases. These methods val-
idate that counterfactual sample synthesis methods can improve the robustness
of vision-and-language models. Unlike them, we are the first to explore the effec-
tiveness of counterfactual sample synthesis for reducing moment biases in TVG.

3 Methodology

3.1 Problem Formulation

Given an untrimmed video V = {vi}nv−1
i=0 , where vi denotes i-th frame in a video

and nv is the total number of frames, and a sentence S = {si}ns−1
i=0 as a language

query, where si denotes i-th word among the sentence, and ns is the number of
words. [ts, te] denotes ground-truth moment. The video V is encoded into visual
features V = {vi}nv−1

i=0 ∈ R
nv×dv with a pre-trained feature extractor. The query

Q is encoded into query features Q = {wi}nq−1
i=0 ∈ R

nq×dq with a pre-trained
model. The TVG task aims to localize the start and end timestamps [ts, te] of a
specific segment in video V, which refers to the corresponding semantic of query
Q.

3.2 Preliminaries

We utilize Grad-CAM [15] to obtain the contribution of each object to the
model’s prediction. Specifically, the network obtains the feature layer A and
the predicted value y through forwarding propagation. We back-propagate y to
obtain the gradient A′ of the feature layer A, and then calculate αk = 1

N

∑
k A′k

to get the importance of Ak, where k denotes the index of the channel. Finally, we
calculate Lc = ReLU(

∑
k αkA

k) to derive the contribution of each participant.



440 M. Zhai et al.

3.3 Synthesizing Counterfactual Samples

We propose a method for synthesizing counterfactual samples for training. This
method consists of two different types of sample synthesis strategies. As shown
in Fig. 2, for an original QV pair < V,Q > organized by a video and a query,
we synthesize a visual counterfactual sample < V ∗, Q > and a query coun-
terfactual sample < V,Q∗ > by directly modifying features respectively. First
of all, we use pre-trained models to extract the feature of the video and the
query. Secondly, the model’s predictions are obtained through forwarding prop-
agation. Thirdly, we use Grad-CAM to obtain features of counterfactual samples
by back-propagation without updating parameters. When the V or Q changes,
the boundary should also be changed accordingly usually. However, it is hard
to know what the changed boundaries should be, so we use the loss function to
reflect the change of the boundary (i.e., the value of the loss function is inversely
proportional to the prediction accuracy). Finally, we feed synthesized sample fea-
tures into TVG models which can encourage the model to understand language
queries and visual content sufficiently for overcoming moment biases in TVG.

Fig. 2. Overall the TVG model with our method. Given a QV pair, we first encode
their features and feed these features into the TVG model to obtain the predicted
boundary. Then, we utilize Grad-CAM to obtain attention maps of the target layer.
For obtaining counterfactual queries/videos, we use the attention maps to mask/delete
the feature of the queries/videos. At last, we use counterfactual samples to train the
TVG model.

3.3.1 Query Counterfactual Samples
We use a pre-trained model to obtain query features on which subsequent oper-
ations are based. The detailed processes of synthesizing query counterfactual
samples are divided into two parts:
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Calculating and Masking Important Words in the Query. For the
model’s prediction, a few words in a query can have a significant influence on
the model’s decision. We utilize Grad-CAM to derive the contribution of each
object for results, and calculate the contribution heat map Iqc = [ci]

nq−1
i=0 of each

word to the result by

ci(b, wi) = Ci(Ptvg(b|V,Q), wi) :=
∑

(�wi
Ptvg(b|V,Q)), (1)

where Ptvg(b|V,Q) is the predicted probability of boundary b given a video V and
a query Q, and wi is i-th word. The contributions of word wi to boundary b are
larger if the contribution value ci(b, wi) is higher. We calculate aq = Softmax(Iqc )
and top-k word with the highest contribution whose

dq = Topk(argsort[aq
i ]) ∈ R

k×1, s.t.
k∑

i=0

dq � ε, (2)

then mask these word embeddings as

Q∗ = Q � dq, (3)

where � is hadamard product. So far, we use Q∗ and original video features V
to form query counterfactual pairs < V,Q∗ >.

Assigning Moment Annotations. We should assign the moment annotations
for the query counterfactual sample < V,Q∗ >. It is difficult to know the loca-
tion of the boundary after the query has changed. So we design a difference
maximization loss function LDM to reflect the change of the boundary. In other
words, the closer the model prediction result is to the original ground-truth
boundary B, the greater the loss value, and vice versa. Specifically, we propose
a difference maximization (DM) loss to maximize the differences between the
model’s predicted boundaries for counterfactual QV pairs and the ground-truth
boundaries of original samples by

LDM =
1
N

N∑

i

yi log(1 − Pi(b)) + (1 − yi) log(Pi(b)). (4)

3.3.2 Visual Counterfactual Samples
For videos, we use a pre-trained model to encode the video. Similar to Eq. 1, we
calculate the important frame by

ci(b, vi) = Ci(PTV G(b|V,Q), vi) :=
∑

(�vi
PTV G(b|V,Q)). (5)

Also, we use Grad-CAM to get the contribution image Ivc = [ci]nv−1
i=0 of each

frame feature, then we calculate av = Softmax(Ivc ), and delete the important
frame as a new query V ∗. The position where the sum of the top-k values
dq = Topk(argsort[aq

i ]) ∈ R
k×1 from the obtained contribution image is greater
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than or equal to the threshold ε (i.e.,
∑k

i=0 d
q � ε)is the important part. A

counterfactual video is synthesized by deleting the original video as

V ∗ = V � dv = Concat(del{V [dv]},0nv−k), (6)

where del is delete operation, and 0nv−k is nv − k dimension zero vector. We
use V ∗ and original queries V to form visual counterfactual pairs < V ∗, Q > by
doing so. The processing of moment annotations is the same as in Sect. 3.3.1.
Although we can assign a boundary for < V ∗, Q >, we still utilize LDM to reflect
the change of the boundary for unifying the way of assigning boundaries to two
kinds of counterfactual pairs.

3.4 Training Process

By the above, we can get visual counterfactual samples < V ∗, Q > and query
counterfactual samples < V,Q∗ >. During the training process, all kinds of sam-
ples including original samples both participate in training. Specifically, when
training with original samples, we directly utilize

LCE =
1
N

N∑

i=1

yi log(Pi(B|Q,V )) + (1 − yi) log(1 − Pi(B|Q,V )) (7)

to train the TVG model. For training with counterfactual samples, we first utilize
LCE to obtain the gradient of the target layer, thus synthesize counterfactual
samples, and use LDM to train the TVG model. The overall training process is
as follows:

1. Training the TVG model using original samples to get the baseline model by
minimizing the loss LCE .

2. Calculating gradients of the target layer of the loss LCE without updating
parameters to get a contribution of each object for synthesizing counterfactual
samples < V ∗, Q > and < V,Q∗ >.

3. Choosing a sample among the original samples < V,Q >, visual counterfac-
tual samples < V ∗, Q >, and query counterfactual samples < V,Q∗ > with
the same probability.

4. Training a TVG model using counterfactual samples by minimizing the loss
LDM .

5. Going back to step 2 until the model converges or the stopping condition is
met.

At the testing stage, we directly predict boundaries through the TVG model
without synthesizing counterfactual samples.
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4 Experiments

4.1 Datasets and Metric

Datasets. We conduct experiments on Charades-CD and ActivityNet-CD
datasets by Yuan et al. [11] proposed. These two datasets are reorganized for
each split based on the Charades-STA [21] and ActivityNet Caption [22] datasets.
Each dataset is re-splitted into four sets: training set, validation set, independent-
identical-distribution (IID) test set, and out-of-distribution (OOD) test set. All
samples in the training set, validation set, and iid-test set satisfy independently
identical distribution, and the samples in the ood-test set are out-of-distribution.
Charades-CD has 4,564 videos and 11,071 sample pairs in the training set, 333
videos and 859 sample pairs in the validation set, 333 videos and 823 sample
pairs in the iid-test set, 1442 videos and 3375 sample pairs in the ood-test set.
ActivityNet-CD has 10,984 videos and 51,414 sample pairs in the training set,
746 videos and 3,521 sample pairs in the validation set, 746 videos and 3,443
sample pairs in the iid-test set, 2,450 videos and 13,578 sample pairs in the
ood-test set.

Table 1. Performance on Charades-CD and ActivityNet-CD dataset of different TVG
models.

(a) Charades-CD

Split Model dR@1,IoU@m dR@5,IoU@m mIoU

m = 0.5 m = 0.7 m = 0.9 m = 0.5 m = 0.7 m = 0.9

iid 2D-TAN 35.60 21.39 5.83 75.70 43.62 9.84 35.70

2D-TAN + ours 35.27 16.88 4.19 57.04 29.92 6.05 34.71

VSLNet 50.30 31.23 9.36 63.79 46.42 15.31 46.99

VSLNet + ours 50.06 30.62 7.65 65.01 45.20 13.61 44.98

ood 2D-TAN 24.91 10.38 2.16 61.83 25.68 3.91 27.99

2D-TAN + ours 28.16 11.88 3.14 64.39 26.48 4.40 32.83

VSLNet 39.11 21.51 5.45 58.13 39.38 11.73 39.78

VSLNet + ours 45.90 26.47 7.74 62.96 45.26 13.88 45.92

(b) ActivityNet-CD

Split Model dR@1,IoU@m dR@5,IoU@m mIoU

m = 0.5 m = 0.7 m = 0.9 m = 0.5 m = 0.7 m = 0.9

iid 2D-TAN 34.51 18.03 4.91 65.83 37.55 8.92 34.26

2D-TAN + ours 32.12 16.10 4.15 62.62 33.94 7.90 32.09

VSLNet 35.91 23.08 9.94 50.62 35.00 13.93 37.68

VSLNet + ours 35.10 22.50 9.35 49.32 33.31 14.19 36.95

ood 2D-TAN 18.90 9.37 2.50 43.54 24.36 5.25 22.72

2D-TAN + ours 19.68 10.32 2.76 44.41 25.10 5.13 23.58

VSLNet 17.89 9.71 3.16 32.38 18.12 5.22 22.57

VSLNet + ours 19.85 10.24 3.69 31.18 18.99 5.05 23.88

Metric. We use the metric dR@n, IoU@m [11]. This metric can better evaluate
the performance of models for the current biased datasets. The metric adds a
limiting factor to R@n, IoU@m denoted as

dR@n, IoU@m =
1

Nq

∑

i

r(n,m, qi) · (1 − abs(psi − gsi )) · (1 − abs(pei − gei )), (8)
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Table 2. The preformance of unimodal models and 2D-TAN on Charades-CD dataset.

Model dR@1,IoU@m dR@5,IoU@m mIoU

m = 0.5 m = 0.7 m = 0.5 m = 0.7

2D-TAN 24.91 10.38 61.83 25.68 27.99

2D-TAN (w/o video) 19.31 7.07 61.94 24.11 23.77

2D-TAN (w/o query) 13.11 4.38 43.27 13.66 15.80

where p
s/e
i is the start/end time of the model prediction, and g

s/e
i is the start/end

time of the ground-truth moment. For each query qi, r(n,m, qi) = 1 if at least
one of the top-n predicted moments has an IoU larger than threshold m with
the ground-truth boundary, otherwise r(n,m, qi) = 0. The total number of all
samples is Nq.

4.2 Implementation Details

We utilize the 300d GloVe [16] vectors to initialize the words in the query. For
the video, we use the pre-trained VGG feature [18] for Charades-CD and the
C3D feature [17] for ActicityNet-CD. We add our method to 2D-TAN [8] and
VSLNet [9]. For hyperparameters, we follow [8,9], and use the last convolutional
layer of the feature fusion module as the target layer of Grad-CAM and the
threshold ε is 0.8. All the experiments are conducted with the Adam optimizer
[19] for 20 epochs with learning rate initialized as 5 × 10−4. We train all models
on two GTX 1080ti GPUs with PyTorch1.7.

4.3 Comparisons

The performances of 2D-TAN and VSLNet that are equipped with our method
are significantly improved on Charades-CD and ActivityNet-CD ood-splitted. As
shown in Table 1, VSLNet with our method obtains 6.14% gains in “mIoU” and
4.96% gains in “dR@1, IoU@0.7”. Our method brings 4.84% gains in “mIoU”
and 1.5% gains in “dR@1, IoU@0.7” for 2D-TAN.

Our method prevents the model from exploiting moment bias, thus the model
performance drops on the iid-test set. On the contrary, the performance of the
model on the ood-test set has been significantly improved. We know that Zhang
et al. [13] also use VSLNet as the baseline, but they replace the stacked LSTMs
with stacked transformer blocks, so it is difficult to make a fair comparison. Our
improvement on the mIoU metric is better than theirs, and on other metrics is
comparable performance.

4.4 Ablation Studies and Analyze

Moment Biases in Baseline Models. We first study the performance of
baseline models on the Charades-CD and ActivityNet-CD datasets. We train
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Table 3. Ablation studies on Charades-CD dataset. “(w/o Q)” denotes only using
visual counterfactual samples for training. “(w/o V)” denotes only using query coun-
terfactual samples for training. Our method adds both of the above samples to the
training.

Model dR@1,IoU@m dR@5,IoU@m mIoU

m = 0.5 m = 0.7 m = 0.9 m = 0.5 m = 0.7 m = 0.9

2D-TAN 23.19 9.64 2.19 50.24 21.47 3.56 26.69

2D-TAN + ours (w/o Q) 26.60 9.85 2.38 54.42 23.25 3.20 29.73

2D-TAN + ours (w/o V) 26.85 11.47 2.84 54.62 26.16 3.41 30.44

2D-TAN + ours 28.16 11.88 3.14 54.39 26.48 4.40 31.83

VSLNet 39.11 21.51 5.45 58.13 39.38 11.73 39.78

VSLNet + ours (w/o Q) 40.12 21.34 5.56 59.99 41.21 11.96 40.22

VSLNet + ours (w/o V) 45.23 25.97 7.59 60.18 45.10 13.06 44.78

VSLNet + ours 45.90 26.47 7.74 62.96 45.26 13.88 45.92

2D-TAN, 2D-TAN(w/o query), and 2D-TAN(w/o video) respectively, and the
results are summarized in Table 2. It is observed that 2D-TAN(w/o query) has a
large gap with 2D-TAN, and 2D-TAN(w/o video) has a small gap with 2D-TAN.
For example, under the mIoU metric, 2D-TAN(w/o video) drops by 4.22%, while
2D-TAN(w/o query) drops by 12.19%. According to the results, we conclude that
the model relies on moment biases to make predictions.

Improving Sensitivity. We combine our method with two baseline models and
test them on the Charades-CD and ActicityNet-CD datasets, and the results
are listed in Table 3. All strategies can improve the performance of the baseline
model on the ood-test set to a certain extent, which indicates that our method
is beneficial to the prediction of the model on the ood-test set. For example,
after adding our method to 2D-TAN, the performance of dR@1, IoU@0.7 metric
is improved by 2.24%, and the mIoU metric is improved by 5.14%. In addition,
the performance improvement of the “w/o V” strategy is better than that of the
“w/o Q” strategy.

4.5 Visualizations

In this section, we present some visualizations. As shown in Fig. 3, we can intu-
itively observe the improvement of TVG models by our method. The figure on
the left shows the model gives more accurate predictions for the same sample
after adding our method to the model. The right shows the case of moment
bias in the training set, which the original 2D-TAN relies on for prediction.
Specifically, the boundary corresponding to most sentences containing the word
“opens” is in the early 20% of the video moment, and the original 2D-TAN also
predicts in the first 20% of the video moment, but this is a wrong boundary.
The 2D-TAN using our method overcomes this moment bias and makes correct
inferences. In summary, our method not only enables TVG to overcome moment
biases but also better generalizes to out-of-distribution samples.
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Fig. 3. Visualizations of qualitative examples. The left depicts the localized results of
the two models in the ood-test set. The right shows superficial correlations between
language queries and moment locations in the training set.

5 Conclusion

In this paper, we have presented a model-agnostic method for synthesiz-
ing counterfactual samples. Our method masks/deletes important parts of
queries/videos, so that the model can focus on important words/frames rather
than several strongly biased words/frames. Furthermore, our method can effec-
tively improve the performance of TVG models and makes the model sensitive to
linguistic and visual variations. Extensive experiments demonstrate our method
helps overcome moment biases in TVG and improves models’ performance on
ood-test sets.
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